SOME REPRESENTATION THEOREMS FOR INVARIANT PROBABILITY MEASURES

BY S. CATER

Throughout this paper X will be a set, $\mathfrak R$ will be a σ -algebra of subsets of X (for a definition of σ -algebra and σ -ring of subsets of X see [3]), T will be a mapping of X into X, and m will be a measure on $\mathfrak R$. We say that $\mathfrak R$ is T-invariant if $A \in \mathfrak R$ implies $T^{-1}A \in \mathfrak R$, and a set $A \in \mathfrak R$ is T-invariant if $A = T^{-1}A$. If $\mathfrak R$ is T-invariant, and if $m(A) = m(T^{-1}A)$ for all $A \in \mathfrak R$, we say that m is T-invariant. We say that m is a probability measure on $\mathfrak R$ if m(X) = 1. If m is a T-invariant probability measure, and if m(A) = 0 or 1 for every T-invariant set $A \in \mathfrak R$, we say that m is ergodic. If m is a measure on $\mathfrak R$ and if $E \in \mathfrak R$, the measure m_1 defined by $m_1(A) = m(A \cap E)$, all $A \in \mathfrak R$, is called the contraction of m to the set E.

In [1] Blum and Hanson studied the problem of expressing a T-invariant probability measure as a "combination" of some sort of ergodic measures. The following proposition can be inferred from their work.

PROPOSITION 1. Let T be a 1-1 mapping of X onto X, let $\mathfrak R$ be a T-invariant σ -algebra of subsets of X, let m be a T-invariant probability measure on $\mathfrak R$, and let $\mathfrak E$ be the set of all ergodic measures on $\mathfrak R$. Suppose that for any T-invariant set $A \in \mathfrak R$ for which there is a T-invariant probability measure m_0 with $m_0(A) > 0$ there is a $p \in \mathfrak E$ for which p(A) > 0. Then m has an integral representation on $\mathfrak E$; i.e., there is a probability measure μ on a σ -algebra of subsets of $\mathfrak E$ such that for any set $A \in \mathfrak R$, we have that p(A), regarded as a function of p, is measurable on $\mathfrak E$ and $m(A) = \int_{\mathfrak R} p(A) d\mu$.

Employing methods similar to those in [1], Farrell [2] studied situations in which X is a topological space and \mathfrak{A} consists of the Baire subsets of X. The following proposition can be inferred from the work of Farrell.

PROPOSITION 2. Let X be a compact Hausdorff space, let \Re consist of the Baire subsets of X, and let T be a continuous mapping of X into X. Then any T-invariant probability measure m on \Re has an integral representation as in Proposition 1.

The purpose of the present paper is to construct analogues of Proposition 2 in which X is not required to be compact (or locally compact or σ -compact or metrizable) and to apply these analogues to several concrete examples to which the results stated in [2] are not applicable.

Now let \mathcal{F} be a real vector lattice of bounded real-valued functions on X. We say that \mathcal{F} is T-invariant if $f(x) \in \mathcal{F}$ implies $f(Tx) \in \mathcal{F}$. If \mathcal{F} is T-invariant,

Received February 21, 1963.