CORRECTION TO MY PAPER "FIXED-POINT THEOREMS FOR COMPACT CONVEX SETS"

$\begin{array}{c} {\rm BY} \\ {\rm Mahlon \ Marsh \ Day^2} \end{array}$

Mr. Neil Rickert has pointed out to me that the remark on page 589 claiming validity for the converse of Theorem 3 stumbles on the fact that the adjoint mapping of the left regular representation of S over C(S) need not be $(w^*$ -) continuous unless S is discrete or compact. (For example, over the real additive group G, a μ in $C(G)^*$ and an x in C(G) can easily be constructed such that $\mu(x) = [l_0^*\mu](x) = 1$ but $[l_q^*\mu](x) = 0$ for all $g \neq 0$). Because the proof of Theorem 1 anchors on one element of K, this need not be catastrophic. The converse as claimed is false, but a related condition is equivalent to left-amenability of C(S). Recall that A(K) is the semigroup of affine, continuous mappings of the compact convex set K into itself.

DEFINITION. A homomorphism τ of a topological semigroup S into A(K) is called *slightly continuous* if and only if there is at least one y in K such that $[\tau s](y)$ is a continuous function from S into K.

The remark at the bottom of (c), p. 589, should then be replaced by

Theorem 4. If S is a topological semigroup, there is a left-invariant mean on C(S) if and only if for each compact convex set K in each locally convex space X and for each slightly continuous homomorphism of X into A(K) there is in K a common fixed point p of all the transformations in the semigroup $\Sigma = \tau(S)$.

To sketch the proof: If γ is a left-invariant mean on C(S), let δ be any extension of γ which is a mean on m(S). (For existence of δ see reference [4, Theorem 1, p. 20].) Define V from $m(\Sigma)$ to m(S) by: for all x, $[Vx](s) = x(\tau s)$ for all s. If $\mu = V^*\delta$, then μ is a mean on $m(\Sigma)$. If y is chosen in K to fit the condition imposed by slight continuity of τ , the left-invariance of γ on C(S) implies that $h(j\mu) = j\mu$ for every h in Σ ; that is, that $j\mu = jV^*\delta$ is the desired fixed point in K.

The proof for the converse requires only the following lemma, which can be proved by observing that every evaluation functional η_{s_0} , defined by $\eta_{s_0}(x) = x(s_0)$ for all x in C(S), is a mean on C(S) for which $l_s \eta_{s_0}$ is a continuous function from S into C(S) with its w-topology.

Lemma. The adjoint of the left regular representation over C(S) is a slightly continuous representation of S in A(M), when M is the $(w^*$ -compact, convex) set of means on C(S) with the w^* -topology.

Received May 7, 1964.

¹ Illinois Journal of Mathematics, vol. 5 (1960), pp. 585-589.

² This correction was written while the author was partially supported by a grant from the National Science Foundation.