THE CONSTRUCTION OF A CLASS OF DIFFUSIONS

BY

DONALD A. DAWSON

1. Introduction

E. B. Dynkin [4] has shown that the generator of a diffusion on a locally compact, separable space Q has a canonical representation in terms of the mean hitting times and hitting probabilities. Let $x(t)$ be a strict Markov process with generator \mathfrak{G} whose domain is $D(\mathfrak{G})$. Let $f \in D(\mathfrak{G})$, $\xi \in Q$, U be a neighborhood of ξ with compact closure and nonnull boundary and τ^U be defined as inf $(t : x(t) \notin U)$. Then

$$
(\mathcal{G}f)(\xi) = \lim_{U \downarrow \xi} \frac{E_{\xi}(f(x(\tau^U))) - f(\xi)}{E_{\xi}(\tau^U)}.
$$

It is easy to show that @ satisfies ^a maximum property and is ^a local operator on $C(Q)$. W. Feller [6] has posed the converse question, namely, does every local operator on $C(Q)$ which satisfies the maximum property generate a diffusion. As a partial solution of this problem it will be shown that every such operator arising from a set of mean hitting times and hitting probabilities having certain smoothness properties does indeed generate a diffusion. The method employed is the construction of a sequence of approximating random walks which will be shown to converge to a limit process which is a diffusion. This is an extension of the construction of F. B. Knight [10], [11] for the onedimensional case.

This paper is based on he author's Ph.D. thesis written under the supervision of Professor Henry P. MeKean Jr.

2. Some definitions and the main result

Let Q be a locally compact, separable Hausdorff space with metric $\rho(\cdot, \cdot)$. Let C be the class of all compact subsets of the state space Q and S be the σ -field generated by **C**. The sets of **S** are called the *Borel sets* of Q [7].

Let Δ be a collection of open sets with nonnull boundaries of the space Q such that

i. the closure of any set of Δ is a compact subset of Q,

ii. Δ is a base for the topology of Q , and

iii. if D_1 , $D_2 \in \Delta$, then $D_1 \cup D_2$, $D_1 - \bar{D}_2$, and $D_1 \cap D_2 \in \Delta$ if they are nonempty.

For $D \in \Delta$, let $B(\partial D)$ be the class of Borel subsets of ∂D , the boundary of D.

Received July 22, 1963.