FINITE MÖBIUS-PLANES ADMITTING A ZASSENHAUS GROUP AS GROUP OF AUTOMORPHISMS¹

BY

Heinz Lüneburg

We call an incidence structure \mathfrak{M} consisting of points and circles and an incidence relation between points and circles a Möbius-plane (= inversive plane), if the following axioms are satisfied (see e.g. Benz [1]):

- (1) If P, Q, R are three different points of \mathfrak{M} , then there exists one and only one circle k in \mathfrak{M} such that P, Q, R ϵ k.
- (2) If k is a circle and P a point on k and if Q is a point not on k, then there exists one and only one circle l with P, Q ϵ l and k \cap l = {P}.
- (3) There are four points which do not all lie on the same circle, and every circle carries at least one point.

 σ is called an *automorphism* of \mathfrak{M} , if σ is a permutation of the points of \mathfrak{M} which maps concyclic points on concyclic points. The full automorphism group of \mathfrak{M} is called the *Möbius-group* of \mathfrak{M} .

If P is a point of \mathfrak{M} , then we derive an incidence structure $\mathfrak{A}(\mathfrak{M}, P)$ from \mathfrak{M} and P in the following way:

- (a) The points of $\alpha(\mathfrak{M}, P)$ are the points of \mathfrak{M} which are different from P.
- (b) The lines of $\alpha(\mathfrak{M}, P)$ are the circles through P.
- (c) A point Q and a line l of Q(M, P) are incident if and only if the corresponding point Q and the corresponding circle l are incident in M.

It is a well known fact that $\alpha(\mathfrak{M}, P)$ is an affine plane (Benz [1, Satz 1]). If \mathfrak{M} is a finite Möbius-plane, then it follows from the fact that $\alpha(\mathfrak{M}, P)$ is an affine plane that the number of points of \mathfrak{M} is $q^2 + 1$ and the number of points which lie on a circle is q + 1. It is easily seen that the number of circles is $q(q^2 + 1)$. We call q the order of \mathfrak{M} .

Let \mathcal{B} be a set of circles and P a point. We call \mathcal{B} a *tangent bundle* through P, if the following hold:

- (i) $\mathfrak{G} \neq \emptyset$.
- (ii) $k, l \in \mathfrak{B}$ and $k \neq l$ imply $k \cap l = \{P\}$.
- (iii) $k \in \mathfrak{B}$ and $k \cap l = \{P\}$ imply $l \in \mathfrak{B}$.

Let Σ be a permutation group on the set \mathcal{O} ; then we call Σ Zassenhaus transitive on \mathcal{O} , if Σ is doubly transitive on \mathcal{O} and if only the identity fixes three different elements of \mathcal{O} .

Received June 15, 1963.

¹ Research supported in part by the U. S. Army European Research Office, Frankfurt am Main.