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We call an incidence structure consistin of points and circles and an
incidence relation between points and circles a M6bius-p]ane (= inversive
plane), if the followin axioms are satisfied (see e.. Benz [1]):

(1) If P, Q, R are three different points of 9, then there exists one and only
one circle/c in such that P, Q, R

(2) If lc is a circle and P a point on/ and if Q is a point not on k, then there
exists one and only one circle with P, Q and l a P

(3) There are four points which do not all lie on the same circle, and every
circle carries at least one point.

a is called an automorphism of
which maps concyclic points on concyclic points. The full automorphism
group of 9 is called the MSbius-group of

If P is a point of 9, then we derive an incidence structure ((9, P) from
9 and P in the following way"

(a) The points of ((9, P) are the points of which are different from P.
(b) The lines of ((, P) are the circles through P.
(c) A point Q and a line of ((9, P) are incident if and only if the corre-

sponding point Q and the corresponding circle are incident in ff.

It is a well known fact that ((, P) is an affine plane (Benz [1, Satz 1]).
If 9 is a finite MSbius-plane, then it follows from the fact that a(, P)

is an affine plane that the number of points of is q2 + 1 and the number of
points which lie on a circle is q - 1. It is easily seen that the number of
circles is q(q2

_
1). We call q the order of ).

Let (B be a set of circles and P a point. We call 5 a tangent bundle through
P, if the following hold"

(i)
(ii) /,le6and/c limply/al {P}.
(iii) le6andkal {P} implyle6.

Let 2 be a permutation group on the set (e; then we call 2: Zassenhaus
ransitive on (P, if 2: is doubly transitive on (P and if only the identity fixes
three different elements of
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