ON THE UNITS OF AN ALGEBRAIC NUMBER FIELD

BY

JAMES AX¹

Introduction

Let K be an algebraic number field of degree n over the field of rational numbers Q. Let p be a rational prime and denote the p-adic completion of Q by Q_p . Let A denote the completion of the algebraic closure of Q_p equipped with its valuation $| |_p$ normed so that $| p |_p = 1/p$. Let T be the set of n distinct monomorphisms of K into A.

The *p*-adic rank $r_p = r_{K,p}$ of the units U of K is defined as the rank of the *p*-adic regulator matrix

$$\mathfrak{R}_p = (\log_p \tau(V_i))_{\tau \in T, i=1, \cdots, r}$$

where v_1, \dots, v_r is a basis for a free direct summand of U of maximal rank $(r = r_{\kappa} = \text{dirichlet number of } K)$ and where the *p*-adic logarithm is defined by the usual series for principal units and extended to all units of A by means of the functional equation. Thus if $v \in A$ is such that $|v - 1|_p < 1$ then $\log_p v = -\sum_{k=1}^{\infty} (1 - v)^k / k \in A$ and if $|v|_p = 1$ then

$$\log_p v = (\log v^m)/m$$

for any positive integer m such that $|v^m - 1|_p < 1$.

We have $r_p \leq r$. In the abelian case Leopoldt in [6] has raised the question of determining r_p and in particular asked if $r_{K,p} = r_K$ for all abelian K and rational primes p. In §1 we prove the following partial result on Leopoldt's problem.

THEOREM 1. If K/Q is an abelian extension with galois group G of exponent m such that $m \leq 4$ or m = 6, then $r_p = r$.

The proof uses Mahler's *p*-adic analogue [7], [8] of Hilbert's seventh problem $(\alpha^{\beta} \text{ is transcendental if } \alpha \text{ and } \beta \text{ are algebraic numbers such that } \alpha \neq 0, 1 \text{ and } \beta$ is irrational). The same proof actually proves a slightly stronger result (Theorem 1') as well as the following fact.

THEOREM 2. If K/Q is normal and $r \geq 2$ then $r_p \geq 2$.

In §2 an algebraic method is employed to solve the following special cases of Leopoldt's problem.

THEOREM 3. Let p be a regular prime, let a be a positive integer, let ζ be a primitive p^a -th root of unity and let $K = Q(\zeta)$. We then have $r_p = r$.

Received February 17, 1964.

¹ Work partially supported by the National Science Foundation.