ON THE ORDER TOPOLOGY IN A LATTICE

 $\mathbf{B}\mathbf{Y}$

D. C. Kent

Introduction

Order convergence in a lattice S may fail to be pretopological; when pretopological, it may fail to be topological; when topological, S may fail to be a topological lattice under its order topology.

We first state a condition c_1 on the local ideal structure of S which is necessary and sufficient to make order convergence pretopological. Under c_1 , the neighborhood filter at each point x in S is generated by a certain family of closed intervals. Next we state conditions c_2 and c_3 each of which, when combined with c_1 , suffices to make order convergence topological. The order topology obtained under c_2 differs in a significant way from that obtained under c_3 . In both cases, however, S is a topological lattice under its order topology, and, in each case, the order topology has an open subbase of ideals and dual ideals reminiscent of Frink's *ideal topology* [3] in a lattice.

1. Notation

For a subset $A \subset S$, A^* will denote the set of all upper bounds of A, and A^+ the set of lower bounds of A. $\{x\}^*$ and $\{x\}^+$ will be written x^* and x^+ respectively. The "closed interval" notation, $[x, y] = x^* \cap y^+$ ($x \leq y$) will be employed.

If A, B are subsets of S, we define

$$A \lor B = \{x \lor y : x \in A, y \in B\}; \qquad A \land B = \{x \land y : x \in A, y \in B\}.$$

 \mathfrak{F} and \mathfrak{G} will be the usual notation for filters on S. Let

$$\mathfrak{F}^+ = (\bigcup F^+ : F \ \epsilon \ \mathfrak{F}) \text{ and } \mathfrak{F}^* = (\bigcup F^* : F \ \epsilon \ \mathfrak{F}).$$

One can show that the families

$$\{F \lor G : F \in \mathfrak{F}, G \in \mathfrak{G}\}$$
 and $\{F \land G : F \in \mathfrak{F}, G \in \mathfrak{G}\}$

are filter bases on S; the filter generated by the first is called $\mathfrak{F} \vee \mathfrak{G}$, and by the second, $\mathfrak{F} \wedge \mathfrak{G}$.

The following relationships are easily verified:

Received September 14, 1964.