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1. Introduction
In this pper we obtain inequalities and location theorems linking all the

eigenwlues of all of the principal/ N k submatrices of a normal or Hermitian
n X n matrix A to the eigenvalues of A. We also obtain inequalities for cer-
tain expressions involving k N ]c subdeterminants of A. In addition we ex-
amine the possible occurrences of a multiple eigenvalue of A among the eigen-
values of the principal k X k submatrices of A. Certain of our theorems for
normal matrices hold only when/ n 1. It is an interesting and open
question to find analogues of these theorems for k / principal submatrices.
For Hermitian matrices we obtain stronger theorems than are possible for
arbitrary normal matrices. In one of our theorems (Theorem 3) we only
require that A be diagonable.

2. Notation

In this paper A (A.) denotes an n X n diagonable matrix with eigen-
values X, X,..., X. Usually A will be normal. In general the eigen-
values are not all distinct so let ,,, , , denote the distinct eigenvalues,
where the multiplicity of is e for 1 =< i =< s; e -k -k e, n.
We arrange the notation so that

(x, x., ..., x) (, ..., ,, ., ..., ., ..., , -.., ).

When A is Hermitian we assume < . < < .
For fixed integers n and k, 1 k < n, Qua, denotes the set of all sequences

[i, i,-.., i} of integers such that 1 -< i, < i. < < i -< n. We
always let

{i,,i.,-.-,i} and r {j,j,...,

be two typical elements of Q. The k X k matrix B defined by

B A, 1 <- a,/ <= k,

is denoted by A[I r]. The (n 1) (n 1) matrix obtained by deleting
row i and column j from A is denoted by A(i J). We let f(x), f(x),
f(x) stand for the characteristic polynomials of A, A[ 1], A(ili), respec-
tively. We let

X- X-f[l(h) h c1 d- c2 d- 1)c.
Here, of course, c is the sum of the principal (k j) X (k j) subdetermi-
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