PRINCIPAL SUBMATRICES OF NORMAL AND HERMITIAN MATRICES

BY

R. C. Thompson

1. Introduction

In this paper we obtain inequalities and location theorems linking all the eigenvalues of all of the principal $k \times k$ submatrices of a normal or Hermitian $n \times n$ matrix A to the eigenvalues of A. We also obtain inequalities for certain expressions involving $k \times k$ subdeterminants of A. In addition we examine the possible occurrences of a multiple eigenvalue of A among the eigenvalues of the principal $k \times k$ submatrices of A. Certain of our theorems for normal matrices hold only when k = n - 1. It is an interesting and open question to find analogues of these theorems for $k \times k$ principal submatrices. For Hermitian matrices. In one of our theorems (Theorem 3) we only require that A be diagonable.

2. Notation

In this paper $A = (A_{ij})$ denotes an $n \times n$ diagonable matrix with eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$. Usually A will be normal. In general the eigenvalues are not all distinct so let $\mu_1, \mu_2, \dots, \mu_s$ denote the distinct eigenvalues, where the multiplicity of μ_i is e_i for $1 \leq i \leq s$; $e_1 + \dots + e_s = n$.

We arrange the notation so that

$$(\lambda_1, \lambda_2, \cdots, \lambda_n) = (\mu_1, \cdots, \mu_1, \mu_2, \cdots, \mu_2, \cdots, \mu_s, \cdots, \mu_s).$$

When A is Hermitian we assume $\mu_1 < \mu_2 < \cdots < \mu_s$.

For fixed integers n and $k, 1 \leq k < n$, Q_{nk} denotes the set of all sequences $\omega = \{i_1, i_2, \dots, i_k\}$ of integers such that $1 \leq i_1 < i_2 < \dots < i_k \leq n$. We always let

$$\omega = \{i_1, i_2, \cdots, i_k\}$$
 and $\tau = \{j_1, j_2, \cdots, j_k\}$

be two typical elements of Q_{nk} . The $k \times k$ matrix B defined by

$$B_{\alpha\beta} = A_{i_{\alpha}j_{\beta}}, \qquad 1 \leq \alpha, \beta \leq k,$$

is denoted by $A[\omega | \tau]$. The $(n-1) \times (n-1)$ matrix obtained by deleting row *i* and column *j* from *A* is denoted by A(i | j). We let $f(\lambda)$, $f_{[\omega]}(\lambda)$, $f_{(i)}(\lambda)$ stand for the characteristic polynomials of *A*, $A[\omega | \omega]$, A(i | i), respectively. We let

$$f_{[\omega]}(\lambda) = \lambda^k - c_{\omega 1} \lambda^{k-1} + c_{\omega 2} \lambda^{k-2} - \cdots + (-1)^k c_{\omega k} .$$

Here, of course, $c_{\omega j}$ is the sum of the principal $(k - j) \times (k - j)$ subdetermi-

Received January 29, 1965.