FURTHER REMARKS ON NONLINEAR FUNCTIONAL EQUATIONS

 $\mathbf{B}\mathbf{Y}$

Felix E. Browder

Introduction

In three preceding papers under a similar title, [5], [6], [7], the writer has studied mappings T from a reflexive complex Banach space X to its dual X^* which we shall call *complex-monotone*. If (w, u) is the sesquilinear pairing between w in X^* and u in X, we shall call T complex-monotone if it satisfies the two conditions:

(I) For each positive integer N, there exists a continuous, strictly increasing real function c_N on R^1 with $c_N(0) = 0$ such that

(1)
$$|(Tu - Tv, u - v)| \ge c_N(||u - v||)$$

for all u and v with $||u|| \leq N$, $||v|| \leq N$.

(II) There exists a real function c on R^1 with $c(r) \to +\infty$ as $r \to +\infty$ such that for all u,

(2)
$$|(Tu, u)| \ge c(||u||) ||u||.$$

It is the object of the present paper to sharpen and extend these results in several significant respects.

In the first place, in [5], [6], and [7], we discussed operators of two types, either $T = T_0 + C$ or $T = L + T_0 + C$, where T_0 is a nonlinear operator continuous from the strong topology of X to the weak topology of X^* , (demicontinuous), C is a nonlinear completely continuous operator from X to X^* , and L is a closed densely defined linear operator from X to X^* such that L^* is the closure of its restriction to $D(L) \cap D(L^*)$. As compared with the best results in the theory of monotone operators from X to X^* where comparable assumptions are made on Re (Tu - Tv, u - v) and Re (Tu, u), (cf. [9]), these classes of operators seem too narrow in at least two respects. The continuous from finite-dimensional subspaces of X to the weak topology of X^* . In addition, the perturbing completely continuous operator C should be allowed to intertwine itself with T_0 in a suitable sense rather than be merely an additional summand.

In Section 1, we carry through this weakening of requirements to obtain the following results:

THEOREM 1. Let T be a nonlinear complex-monotone mapping of the reflexive complex Banach space X into its dual space X^* . Suppose that T is continuous

Received January 20, 1965.