ON THE PROPAGATOR EQUATION

BY Robert Carroll¹

1. We are concerned here with weak and strong solutions of the evolution equation

(1.1)
$$y' + A(t)y = f(t); \quad y(\tau) = y_0$$

and related abstract equations. A number of observations and theorems will be given with no particular attempt at a "unified theory" (see [15] for a more complete discussion). Thus Part 2 is on strong solutions and propagators G(t,s) solving (1.1) in the form

(1.2)
$$y = G(t, \tau)y_0 + \int_{\tau}^{t} G(t, s)f(s) ds,$$

Part 3 contains some new results on weak solutions, and Part 4 is on some abstract problems. Some of the results have been announced in [16].

2. We suppose A(t) is an unbounded linear operator in the separable Hilbert space H with domain $D_t = D(A(t))$ usually dense but this will be specified in each case. To begin with we suppose the problem (1.1) can be solved (uniquely) for

$$y_0 \in I_\tau \subset H$$
 and $f(\cdot) \in F_\tau \subset L^2(H) = E$

for some linear spaces I_{τ} and F_{τ} ; furthermore we will deal with the finite interval case $\tau \leq t \leq T < \infty$ in general since all of the main features of the problem are exhibited there. We stipulate that all derivatives are in D'(H) (see [33]) and the terms in (1.1) are in $L^2(H)$. First we note a somewhat stronger form of a lemma proved in [10] which is surely well known but seems not to have been written down in this form. Let A(t) be accretive i.e., Re $(A(t)x, x) \geq 0$, and let y be a unique solution of (1.1) with $y_0 = 0$ which we write y = K(f). Now

(2.1)
$$\operatorname{Re} (f, K(f))_{E} = \operatorname{Re} \int_{\tau}^{T} (y' + Ay, y)_{H} dt \\ = \frac{1}{2} \int_{\tau}^{T} \frac{d}{dt} \|y\|^{2} dt + \operatorname{Re} \int_{\tau}^{T} (Ay, y) dt \geq 0$$

(see [3] for integration theory in $L^2(H)$). If F_{τ} is dense and K extends by continuity to a continuous map $\bar{K}: E \to E$ then (2.1) extends to all E. But from (2.1) we can deduce also that

Received July 15, 1966.

¹ Research supported in part by a National Science Foundation grant.