MEASURES ON NON-SEPARABLE METRIC SPACES

BŸ

R. M. DUDLEY¹

1. Introduction

The main purpose of this note is to give a simpler and more general definition of "weak" or "weak-star" convergence of certain measures on nonseparable metric spaces, and to prove its equivalence with the convergence introduced in [1] for the cases considered there.

Let (S, d) be a metric space. Let \mathfrak{G} or $\mathfrak{G}(S)$ be the class of all Borel sets in S, i.e. the smallest σ -algebra containing all the open sets. One can safely assume that a finite, countably additive measure on \mathfrak{G} is concentrated in a separable subset [2]. It has seemed useful to consider finite, countably additive measures on metric spaces, not concentrated in separable subsets, defined on some, but not all, Borel sets [1]. Specifically, one can use the σ -algebra \mathfrak{U} or $\mathfrak{U}(S)$ generated by the open balls

$$B(x, \varepsilon) = \{ y \in S : d(x, y) < \varepsilon \}$$

for arbitrary x in S and $\varepsilon > 0$. Examples of finite measures on \mathfrak{U} not concentrated in separable subsets are the probability distributions of distribution functions of "empirical measures" [1]. For a simpler example, let S be uncountable and d(x, y) = 1 for $x \neq y$. Then \mathfrak{U} consists of countable sets, which we give measure 0, and sets with countable complement, which we give measure 1.

If S is separable, then all open sets are in \mathfrak{U} by the Lindelöf theorem, hence $\mathfrak{U} = \mathfrak{B}$. I don't know whether \mathfrak{U} is always strictly included in \mathfrak{B} for S non-separable, but it is in the cases mentioned above, and under the following conditions:

PROPOSITION. Suppose that the smallest cardinal of a dense set in S is c (cardinal of the continuum). Then \mathfrak{U} has cardinal c and \mathfrak{B} has cardinal $2^{\mathfrak{c}}$. Hence \mathfrak{U} is strictly included in \mathfrak{B} .

Proof. Let A be a dense set in S of cardinal c. Let G be the class of balls B(x, r) with x in A and r (positive) rational. We show that G generates \mathfrak{A} . Let $x \in S, r > 0$. Let $x_n \in A, x_n \to x$. We can assume $d(x_n, x) < r$ for all n. Let r_n be positive rational numbers such that $r_n \to r$ and $r_n < r - d(x_n, x)$ for all n. Then

$$B(x, r) = \bigcup_{n=1}^{\infty} B(x_n, r_n),$$

showing that G generates \mathfrak{U} .

Received July 1, 1966.

¹ This research was supported in part by a National Science Foundation grant, and was presented to the International Congress of Mathematicians in Moscow, August 1966.