ON THE EQUATION $f_{1} g_{1}+f_{2} g_{2}=1 \mathbb{N} H^{p}$.

Joseph A. Cima and Gerald D. Taylor

1. Introduction and definition

Let D denote the unit disk in the complex plane and \bar{D} its closure. We shall say that f is in H^{p} of the disk, $p \geq 1$, if f is holomorphic in D and satisfies

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|f\left(r e^{i \theta}\right)\right|^{p} d \theta<M<+\infty
$$

for all $r<1$. It is known that H^{p} is a complete normed linear space with

$$
\|f\|_{p}=\lim _{r \rightarrow 1}\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|f\left(r e^{i \theta}\right)\right|^{p} d \theta\right)^{1 / p} .
$$

In this paper we investigate the following equation

$$
\begin{equation*}
f_{1}(z) g_{1}(z)+f_{2}(z) g_{2}(z)=1, \quad z \in D \tag{1.1}
\end{equation*}
$$

in the following sense. Given f_{1} and f_{2} in H^{p} and H^{r} respectively, what conditions are necessary to guarantee the existence of the pair g_{1} and g_{2} in some Hardy spaces satisfying (1.1). We show by examples one cannot always hope for solutions. We study the structure of the class of the given function pairs f_{1} and f_{2} and also the structure of the solution pairs g_{1} and g_{2}.
Our study is motivated by the classical results of W. Rudin, D. J. Newman and L. Carleson. Since we use their results we state them here. Let H^{∞} denote the space of bounded holomorphic functions in D with the sup norm. The closed subalgebra of H^{∞} consisting of those functions which are also continuous on \bar{D} is denoted by A (of \bar{D}). In [5] Rudin showed that if f_{1} and f_{2} are in A and $\left|f_{1}\right|+\left|f_{2}\right|>0$ on \bar{D} then the ideal generated by f_{1} and f_{2} is A, or there exist solutions g_{1} and g_{2} in A satisfying (1.1) on \bar{D}. Moreover, D. J. Newman has indicated that proving for f_{1} and f_{2} in H^{∞} with $\left|f_{1}\right|+\left|f_{2}\right| \geq$ $\delta>0$ we can find g_{1} and g_{2} in H^{∞} satisfying (1.1) on D is equivalent to showing that the point evaluations on D are dense in the maximal ideal space of H^{∞}. Carleson's [1] solution of this (Corona) problem has completed the H^{∞} phrase of the problem.
We wish to make the following convention. If $S=\left\{z ;\left|z-z_{0}\right|<\rho\right\}$ is a disk then A of \bar{S} means those functions continuous in \bar{S} and holomorphic in S.

2. The basic solution

The following result is known but we have not found a proof in the literature, therefore we include our proof not only for completeness but also because it gives us valuable information about the pairs of solutions of (1.1).

[^0]
[^0]: Received June 10, 1966.

