TRIVIAL LOOPS IN HOMOTOPY 3-SPHERES

BY

WOLFGANG HAKEN

In this paper we show that every homotopy 3-sphere possesses a cell-decomposition Γ which is in some respect especially simple:

Theorem. If M^3 is a homotopy 3-sphere then there exists a cell-decomposition Γ of M^3 with the following properties:

(i) Γ consists of one vertex E^0, r open 1-cells, E^1_1, \ldots, E^1_r, r open 2-cells, E^2_1, \ldots, E^2_r, and one open 3-cell E^3.

(ii) There exist (nonsingular, polyhedral) disks V^2_1, \ldots, V^2_r in M^3 such that $E^i_i \cap V^2_i$ for all $i = 1, \ldots, r$.

(iii) The disks V^2_1, \ldots, V^2_r may be chosen such that the connected components of $V^1_i \cap V^2_j - E^0$ $(i \neq j, \text{between } 1 \text{ and } r)$ are normal double arcs in which V^1_i and V^2_j pierce each other such that the interior of each double arc lies in $E^1_i \cap V^2_j$, one of its boundary points lies in E^1_i, and the other one lies in E^1_j (see Fig. 1), and such that $V^2_i \cap V^2_j \cap V^2_k = E^0$ (if i, j, k are pairwise different, between 1 and r).

It is a known fact that every closed 3-manifold M^3 possesses a cell-decomposition Γ with property (i) (this follows easily from results in Seifert-Threlfall [4], see [2, Sec. 5]). If M^3 is a homotopy 3-sphere, i.e., simply connected, then this is equivalent to the fact that the 1-skeleton $G^1 = \bigcup_{i=1}^{r} E^1_i$ of Γ bounds a "singular fan" in M^3 (see [2, Sec. 6]). Now property (ii) of Γ means that G^1 is a wedge of trivial loops in M^3, and (iii) means that G^1 bounds a singular fan $\bigcup_{i=1}^{r} V^2_i$, which is especially simple in the sense that its single leaves V^2_i are nonsingular.

As Bing has shown in [1] it would be sufficient for a proof of the Poincaré conjecture if one could show that every polyhedral, simple closed curve in M^3 lies in a 3-cell in M^3, or that the 1-skeleton G^1 of some cell-decomposition Γ of M^3 lies in a 3-cell in M^3. The property (ii) of Γ means that every single closed curve $E^1_i \subset G^1$ lies not only in a 3-cell V^2_i (which may be obtained as a small neighborhood of V^2_i) in M^3 but moreover is unknotted in that 3-cell V^2_i. So one may hope that the above theorem could be used as a tool for proving the Poincaré conjecture or for deriving further partial results on homotopy 3-spheres.

Proof of the theorem

1. **Preliminaries.** We choose the semilinear standpoint as described in [3, Sec. 3], i.e., we assume for convenience that M^3 is a piecewise rectilinear