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Every compact 3-manifold M without boundary possesses a cell-decomposi-
tion that contains iust one vertex, say 0, (see for instance [3, Sec. 5]). From
we may read by a well-known procedure (see [7, 62]) a "corresponding"’

presentation
(,z,) ({, ..., o}, {, ...,

of the fundamental group I(M8) where the generators g, g are in 1-1
correspondence with the (oriented) 1-dimensional elements E, ..., E of
I, and the relators r, r are in 1-1 correspondence with the 2-dimensional
elements E, E of , i.e., r is a word in the g obtained by running
once around the boundary of E. In this way the relators are uniquely de-
fined up to cyclic permutations and inversions, i.e., if we denote by
set of all cyclic permutations of r. and of r: then the (r)’s are uniquely
fined.

In the special case that M is a homotopy 3-sphere, () is a presentation
of the trivial group. However, it isin generalan unsolved problem to
recognize whether or not a given presentation () presents the trivial group;
this problem seems to be extremely difficult and it may be unsolvaable, since
the triviality problem of group theory is unsolvable (see [1], [6]). One might
expect that these group theoretic difficulties are also the reason for the diffi-
culties of the Poincar problem. But the result of this paper shows that this
is not so: We shall prove that every homotopy 3-sphere M possesses a cell-
decomposition such that the corresponding presentation

() ({, ..., o}, , ..., }
is obviously trivial, i.e., such that () can be transformed by simple cancella-
tion operations (without changing the generators g and the number b of rela-
tors) into the "standard trivial presentation"

) ({, ..., }, {, ..., go, 2-=})
where .- means that ) contains b a times the empty relator (i.e., the re-
lations of ) are g 1, ga 1, and b a times the trivial relation
1 1). To make this precise we say that a presentation is obtained from
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Here the equality sign means that both sides of the equation represent the same

group element; but in general, if not stated otherwise, we call two words equal if and
only if they read, letter by letter, in the same way.
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