ON THE TRIANGULATION OF THE REALIZATION OF A SEMISIMPLICIAL COMPLEX

BY

S. WEINGRAM

1.

In some mimeographed notes of Barratt [1], in which he shows that the geometric realization of a semisimplicial complex has a simplicial subdivision, there appear to be several errors, one in the statement of the subdivision theorem and two more in the proof. This note will give (we hope) a correct statement and proof of this theorem (Theorem 1.1), and will draw as a consequence the theorem of Milnor [4] that the homotopy groups of the realization |S(X)| of the singular complex of a space are naturally isomorphic to those of the space itself.

We will write ssc for semisimplicial complex. Notation and terminology as in [4] or [5], except that we will denote the abstract *n*-simplex by $\Sigma(n)$, the geometric *n*-simplex by Δ^n .

The main result is the following theorem.

THEOREM 1.1. Let X be a ssc and |X| its realization [4]. Then there is a functor D from the category of ssc's to that of ordered simplicial complexes, a transformation of functors $\lambda : D \to 1$, and, for each X, a map $t_x : |DX| \to |X|$ such that

(i) t_x is a homeomorphism (and therefore a triangulation of |X|;

(ii) t_x defines a subdivision of the CW complex |X|; and

(iii) $|\lambda(X)|$ is homotopic to t_x by a homotopy F such that for each cell |e| of |DX|, F maps $|e| \times |I|$ into the smallest cell |x| of |X| which contains $t_x(|e|)$.

We will give the proof later, in Sections 2, 3, and 4.

COROLLARY 1.2. (Simplicial approximation theorem). If $f: |X| \rightarrow |Y|$ is any map, then f is homotopic to the realization of a ss map of subdivisions of |X|and |Y|. If |X|, |Y| are finite and therefore metrizable, then for any prescribed $\varepsilon > 0$, the homotopy between f and its ss approximation can be chosen so that it does not displace a point outside of an ε -disc.

Proof. Apply the simplicial approximation theorem to the map

 $f': |DX| \rightarrow |DY|, \text{ where } f' = t_y^{-1} ft_x.$

Some remarks about the singular complex of a space. Let X be a space, and S(X) its singular complex. Let $p_X : |S(X)| \to X$ be the map sending the point (P, x_n) of |S(X)| into $x_n(P)$ [4].

Received November 21, 1966.