RISES OF NONNEGATIVE SEMIMARTINGALES¹

BY LESTER E. DUBINS

A real-valued stochastic process f_0 , f_1 , \cdots has a rise of size y if $\exists i, j$ with i < j such that $f_j - f_i \ge y$. This note obtains sharp upper bounds to the probability of a rise of size y for certain natural classes of stochastic processes.

Let Θ be a class of probability measures on the real line. If, for every n, given any partial history f_0, \dots, f_n , the conditional distribution θ of the increment $f_{n+1} - f_n$ is in Θ , then $\{f_i\}$ is a Θ -process. If, in addition, $f_0 \equiv x$, then $\{f_i\}$ is an (x, Θ) -process. One can think of an (x, Θ) -process as the successive fortunes of a gambler whose initial fortune is x, and who chooses his successive lotteries from Θ .

Let $\rho(x, y) = \rho(x, y, \Theta)$ be the least upper bound over all nonnegative (x, Θ) -processes (including not necessarily countably additive processes) to the probability that the process experiences a rise of size y. The determination of ρ can sometimes be reduced to solving a simpler problem, namely that of determining U, where $U(x, y) = U(x, y, \Theta)$ is the least upper bound over all nonnegative (x, Θ) -processes $\{f_j\}$ to the probability that there is j with $f_j \geq y$.

As will soon be evident, there are interesting Θ for which

(1)
$$U(x-m,y-m) = \frac{U(x,y)-U(m,y)}{1-U(m,y)},$$

whenever 0 < m < x, and m < y.

Incidentally, for every Θ , the left side of (1) is majorized by the right side. This inequality is quite simple to establish and is analogous to Theorem 4.2.1, p. 64 in [2].

I do not investigate the regularity conditions that U perhaps automatically satisfies once it satisfies (1), but, at least in interesting examples,

- (2) U(x, y) is convex in x for $0 \le x \le y$,
- and

(3) U(x, y) is continuously differentiable in x and y for $0 \le x \le y$.

Let

(4)
$$\lambda = \lambda(y) = \frac{\partial U}{\partial x}(0, y).$$

THEOREM 1. If U satisfies (1), (2) and (3), then

$$\rho(x, y) = 1 - e^{-\lambda x}.$$

Received April 20, 1967.

¹ This research was supported in part by the Information Systems Branch of the Office of Naval Research.