ON THE FIRST MAIN THEOREM ON BLOCKS OF CHARACTERS OF FINITE GROUPS

BY

RICHARD BRAUER

1. Introduction¹

Let G be a finite group and let p be a fixed prime number. The first main theorem on blocks establishes a one-to-one correspondence between the pblocks B of G with the defect groups D and the p-blocks b of the normalizer $N_{\sigma}(D)$ of D with the defect group D, cf. [2], [3]. It is the purpose of this note to show that this theorem can be derived easily from the results of [4]. We shall need only the results (2A), (2B), (3A), (3B) and (4A) of [4]. In particular, we shall not need any results dealing with fields of characteristic 0. A proof of the main theorem on blocks operating completely within a fixed field Ω of characteristic p has already been given by A. Rosenberg [5].

We use the same notation as in [4]. In particular, Ω will denote an algebraically closed field of characteristic p, $\Omega[G]$ will denote the group algebra of G over Ω , and Z = Z(G) will be the class algebra of G over Ω (i.e., Z(G) is the center of $\Omega[G]$). As remarked in [4], the results (3A), (3B), and (4A) of [4] remain valid, if instead of the decomposition of Z(G) into block ideals we consider more generally any decomposition

(1)
$$Z = A_1 \oplus A_2 \oplus \cdots \oplus A_r$$

as a direct sum of ideals A_i . Each A_i is a direct sum of block ideals of Z. Let \hat{Z} denote the dual space consisting of all linear functions defined on Z with values in Ω .

An ideal $A \neq (0)$ occurs as a summand in a decomposition (1), if and only if A has the form $\eta_A Z$ where η_A is an idempotent of Z. We may consider the dual space \hat{A} of A as a subspace of Z by extending each $f \in \hat{A}$ linearly so that it vanishes on the complement $(1 - \eta_A)A$. (In [4], the notation F_A was used for this subspace of Z.) If Q is a p-subgroup of G, the multiplicity $m_A(Q)$ of Q as a lower defect group of A is defined as follows. Consider subspaces V of \hat{A} with the following two properties.

(i) For each $f \neq 0$ in V, there exists a conjugate class K of G with the defect group Q such that $f(SK) \neq 0$. (Here SK is the class sum of K.)

(ii) For $f \in V$, we have f(SK) = 0 for all conjugate classes K of G whose defect group has lower order than Q.

Then $m_A(Q)$ is the maximal dimension of such Ω -spaces V.

Received November 24, 1969.

¹ The note was written while the author was a Visiting Professor at the University of Chicago. Conversations with John G. Thompson and Richard G. Swan have been helpful.