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It is the purpose of this note to give an alternate proof of the following
theorem which originally is an intermediate result of [1].

THEORElYl (Felt and Thompson). Let G be a simple group of odd order all of
whose proper subgroups are solvable. ’Let E be an elementary abelian p-subgroup
of order p8 in G. Then there is only one maximal subgroup of G which contains E.
The largest part of the proof deals with the Fitting subgroup F of a maximal

subgroup H of G. In 2 we consider the case that F is a p-group; necessary
results about F are derived in a well known way mainly from the Transitivity
Theorem (see (1.1) below) and the ZJ-Theorem (1.2). The case that F is
not a p-group is treated in 3; here a very simple observation is crucial, namely
that arguments in the proof of the Transitivity Theorem can be applied to
certain subgroups of F.
In 4, knowledge about F is used to obtain information about subgroups of

H not necessarily contained in F. Finally transfer arguments finish the proof
of the theorem.
In the remainder of this section we introduce some notation and collect

some necessary lemmas.
Notation.

S-subgroup Sylow p-subgroup
X set of non-identity elements of X
F (X) Fitting subgroup of X maximal nilpotent normal subgroup of X
J (P) subgroup generated by all the abelian subgroups of maximal possible
order of P
r(A, ) set of A-invariant v-subgroups of Y

r*(A, r) set of maximal elements of r(A, v)
group of type (p, p, ..., p) elementary abelian p-group of order p
r (X) _> n means that X has an elementary abelian p-subgroup of order p
SCN, (P) set of abelian normal subgroups of P satisfying Cp (A) A and
r(A) >_ n
{...} the set
(..-} the subgroup generated by

In the following sections G is assumed to be a group of odd order all of whose
proper subgroups are solvable.
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