SOME GENERALIZATIONS, TO CERTAIN LOCALLY FINITE GROUPS, OF THEOREMS DUE TO CHAMBERS AND ROSE

BY

C. J. GRADDON

1. Introduction

In this paper we examine further the properties of the class \mathfrak{U} introduced in [4] and studied again in [9] and [10]. We refer the reader to these papers for our notation and terminology. The class \mathfrak{U} resembles in many ways the class of finite soluble groups. Indeed a result for finite soluble groups which makes sense in the wider context usually holds for U-groups. This is certainly the case with Gaschutz' theory of formations which was carried over to arbitrary QS-closed subclasses \Re of \mathfrak{U} by Gardiner, Hartley and Tomkinson [4]. We have also extended [7] our earlier work [5], [6] on \mathfrak{F} -reducers and \mathfrak{F} -subnormalizers to such classes \mathfrak{R} . In addition the results of Alperin [1] on system normalizers, Carter subgroups and the relation between them in finite soluble groups, were extended to \mathfrak{U} -groups in [9]. It is our aim to show here that many of the results of Chambers [3] and Rose [15] hold in appropriate subclasses of U. Generalizing Chambers [3] we show, for example, that if \Re is a QS-closed subclass of \mathfrak{U} and \mathfrak{F} a saturated \Re -formation then the \mathfrak{F} -normalizers are pronormal in $\mathfrak{R}_{\mathcal{A}}$ -groups (i.e. \mathfrak{R} -groups with abelian Sylow p-subgroups for each prime p). This yields a partial extension of Alperin's [1, Theorem 1] for \mathfrak{F} -normalizers and \mathfrak{F} -projectors of \mathfrak{R}_{A} groups. We shall also show that the \mathfrak{F} -normalizers of $\mathfrak{R}_{\mathcal{A}}$ -groups are characterized as those subgroups which cover the F-central and avoid the F-eccentric We shall extend Chambers' work in Section 2 and Rose's chief factors. in Section 3. In the third and final section we shall consider the class \mathfrak{D} of U-groups with pronormal basis normalizers. For example, we prove that \mathfrak{D} is a \mathfrak{U} -formation (in the sense of [4, §1]) and derive many of its properties from our work [7] on reducers in \mathfrak{U} -groups.

2. *Il-groups with abelian Sylow subgroups*

If \mathfrak{X} is a subclass of \mathfrak{U} we denote by \mathfrak{X}_A the class of \mathfrak{X} -groups with abelian Sylow *p*-groups for each prime *p*. In this section we study the class \mathfrak{U}_A showing in particular that most of Chambers' results on finite soluble *A*groups can be extended to the class \mathfrak{U}_A or appropriate subclasses of it.

It is clear that if \mathfrak{X} is a QS-closed subclass of \mathfrak{U} then so is \mathfrak{X}_A (cf. [4, 2.1]).

LEMMA 2.1. Every \mathfrak{U}_A -group is soluble.

Proof. If $G \in \mathfrak{U}_A$ then G has a finite normal series with locally nilpotent factors. Since \mathfrak{U}_A is QS-closed and every locally nilpotent \mathfrak{U}_A -group is abelian, each of these factors is abelian. Hence G is soluble as claimed.

Received January 26, 1972.