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I. Introduction

In this paper we examine further the properties of the class 1I introduced
in [4] and studied again in [9] and [10]. We refer the reader to these papers
for our notation and terminology. The class 1/l resembles in many ways the
class of finite soluble groups. Indeed a result for finite soluble groups which
makes sense in the wider context usually holds for lI-groups. This is cer-
tainly the case with Gaschutz’ theory of formations which was carried over
to arbitrary QS-closed subclasses of 12 by Gardiner, Hartley and Tomkin-
son [4]. We have also extended [7] our earlier work [5], [6] on -reducers
and -subnormalizers to such classes ft. In addition the results of Alperin
[1] on system normalizers, Carter subgroups and the relation between them
in finite soluble groups, were extended to lI-groups in [9]. It is our aim to
show here that many of the results of Chambers [3] and Rose [15] hold in
appropriate subclasses of 12. Generalizing Chambers [3] we show, for ex-
ample, that if is a QS-closed subclass of 1I nd sturated -formation
then the g-normlizers are pronorml in -groups (i.e. -groups with
belin Sylow p-subgroups for ech prime p). This yields prtisl exten-
sion of Alperin’s [1, Theorem 1] for g-normlizers nd g-projectors of -groups. We shll lso show that the g-normlizers of -groups re charac-
terized as those subgroups which cover the g-central nd void the g-eccentric
chief fctors. We shall extend Chambers’ work in Section 2 nd Rose’s
in Section 3. In the third nd final section we shll consider the class of
lI-groups with pronorml basis normlizers. For example, we prove that

is lI-formtion (in the sense of [4, 1]) nd derive many of its properties
from our work [7] on reducers in lI-groups.

2. l-groups with abelian Sylow subgroups
If is a subclass of 1I we denote by A the class of -groups with abelian

Sylow p-groups for each prime p. In this section we study the class
showing in particular that most of Chambers’ results on finite soluble A-
groups can be extended to the class IIA or appropriate subclasses of it.

It is clear that if is a QS-closed subclass of 11 then so is A (cf. [4, 2.1]).

LEMMA 2.1. Every lI-group is soluble.

Proof. If G e 1I then G has a finite normal series with locally nilpotent
factors. Since 1I is QS-closed and every locally nilpotent ll-group is
abelian, each of these factors is abelian. Hence G is soluble as claimed.
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