ISOMETRIES OF FUNCTION ALGEBRAS

 $\mathbf{B}\mathbf{Y}$

John N. McDonald¹

Let X and Y be compact Hausdorff spaces. A and B will denote sub-algebras of C(X) and C(Y) respectively. (C(X) indicates the space of continuous complex-valued functions on X.) It will be assumed that A and B are equipped with the sup-norm, are point separating, and contain the constant functions. In this paper, we give a description of the linear isometries from A to B in the case where A = C(X) and B = C(Y), and under certain restrictions on the pair (X, Y).

Operators of the form

$$(*) Tf = g(f \circ \psi),$$

where g is a fixed function in C(Y) of norm 1 and ψ is a continuous map from Y into X such that $\psi(|g|^{-1}(1)) = X$, constitute a class of isometries from C(X) into C(Y). In fact, if T is an isometry of C(X) onto C(Y), then T must be of the form (*) (see, e.g., [1, p. 442]). It is not true, in general, that all isometries from C(X) into C(Y) are of the form (*). For example: let $\phi_i : [0, 1] \to [0, 1], i = 1, 2$ be continuous functions having the following properties: $\phi_1 = \phi_2$ on $[0, 1/2], \phi_1([0, 1/2]) = [0, 1], \text{ and } \phi_1(1) \neq \phi_2(1)$. Define isometries $T_i : C[0, 1] \to C[0, 1]$ by $T_i f = f \circ \phi_i, i = 1, 2$. Let

$$T = (1/2) T_1 + (1/2) T_2.$$

Then T is an isometry, but T is not of the form (*).

Let S_A and S_B denote the unit balls in the dual spaces of A and B respectively. Suppose $T : A \to B$ is an isometry. It follows from the Hahn-Banach theorem, that the adjoint T^* of T maps S_B onto S_A . Let l be an element of the set ex S_A of extreme points of S_A . Then $(T^*)^{-1}(l) \cap S_B$ is a non-empty weak^{*} closed face of S_B . (A face F of a convex set K is a convex subset of K such that

$$cf_1 + (1-c)f_2 \epsilon F$$
 and $(c, f_1, f_2) \epsilon (0, 1) \times K \times K$

implies that f_1 , $f_2 \in F$.) It follows from the Krein-Milman Theorem that there is an extreme point e of S_B such that $T^*(e) = l$. It is known (see, e.g., [3, Prop. 6.2]) that l is an extreme point of S_A iff it is of the form $e^{i\alpha}l_x$, where $\alpha \in [0, 2\pi]$ and l_x denotes evaluation at a point x of the Choquet boundary of X with respect to A. Thus, we have the following:

PROPOSITION 1. Let T be an isometry from A into B. Let $\underline{Y(T)} = \{y \in Y \mid |T1(y)| = 1 \text{ and there is a } \hat{T}(y) \in X \text{ such that } Tf(y) = 1$

Received November 15, 1971.

¹ This research was supported by an Arizona State University Faculty Grant in Aid.