A NON-NORMAL HEREDITARILY-SEPARABLE SPACE

BY
Mary Ellen Rudin

Let us for the purposes of this paper use S-space to mean a hereditarilyseparable regular Hausdorff space.

If an S-space is not normal, it is clearly not Lindelöf. Although both unfortunately depend on special set-theoretic assumptions, recently [1], [2] examples have been given of non-Lindelöf S-spaces; both happen to be normal.

So there is current vogue for the question, which Jones [3] says is an old one: Is every S-space normal? We prove here that the answer is at least conditionally no. Jones [3] shows a non-normal S-space can be used to construct a non-completely regular S-space. Thus it is consistent with the usual axioms of set theory that there be a non-completely regular \mathcal{S}-space.

Let us call Σ an S^{*}-space provided Σ is an uncountable S-space with a basis for its topology consisting of sets which are open, closed, and countable. Clearly no S^{*}-space is Lindelöf.

The space described in [1] is an S^{*}-space and this space exists if there is a Souslin line.

In recent correspondence I. Juhász and J. Gerlits point out the following.
Theorem 1. If there is a Souslin line (which is consistent with the axioms of set theory), then there is a non-normal S-space.

Proof. Let Σ be the S-space described in [1]. Let I be the closed unit interval. Using the precise technique given in [5] construct from Σ a normal space T such that $T \times I$ is not normal. Then $T \times I$ will be a non-normal S-space.

A perhaps more general construction gives the following.
Theorem 2. Assume that there is an S^{*}-space and $2^{N_{0}}<2^{N_{1}}$. (This combination is consistent with the usual axioms of set theory, being true, for instance, in $V=L$, Gödel's constructible model of the universe.) Then there is a non-normal S-space.

Proof. We use the following pretty lemma of F. B. Jones [4]. This whole paper is an excuse to restate this lemma.

Lemma. There exists a cardinality $\boldsymbol{\aleph}_{1}$ subset A of the real numbers such that each countable subset B of A is a relative G_{δ} set. Observe that B countable implies $A-B$ is $a G_{\delta}$ but $2^{\mathrm{N}_{0}}<2^{\mathbb{N}_{1}}$ implies there is a subset C of A which is not a G_{δ}.

Received April 16, 1973.

