UNIFORM SPLINE INTERPOLATION OPERATORS IN L_2

BY

FRANKLIN RICHARDS¹

1. Let $m \ge 1$ and $n \ge 2$ be positive integers. Define the class s^{2^m} of cardinal splines of degree 2m - 1 to be those functions S satisfying

(i) S is a polynomial of degree at most 2m - 1 on each of the intervals

(1)
$$[i, i + 1], i = 0, \pm 1, \pm 2, \cdots$$

(ii) $S \in C^{2m-2}(-\infty, \infty)$ If in addition

(2)
$$S(x+n) = S(x) \quad \text{all} \quad x$$

we say S is a periodic spline and denote this class by S_n^{2m} . Let $l_p(n)$ be the space of real *n*-tuples possessing the norm

$$\| y \|_{p} = \left(\sum_{i=1}^{n} | y_{i} |^{p} \right)^{1/p}, \quad 1 \leq p < \infty$$
$$= \max_{1 \leq i \leq n} | y_{i} |, \quad p = \infty.$$

Then the periodic spline interpolation operator \mathfrak{L}_n^{2m} : $l_p(n) \to L_p[0, n]$ is defined by letting $\mathfrak{L}_n^{2m} y$ be that unique element of \mathfrak{S}_n^{2m} satisfying

$$\mathfrak{L}_n^{2m}y(i) = y_i, \qquad i = 1, 2, \cdots, n.$$

Similarly if $(y_i)_{i=-\infty}^{\infty}$ is in l_p , the class of doubly infinite real p — summable sequences, then the cardinal spline interpolation operator

$$\mathfrak{L}^{2m}: l_p \to L_p(-\infty, \infty)$$

is defined by letting $\mathfrak{L}^{2m}y$ be that unique element of $\mathfrak{S}^{2m} \cap L_p(-\infty, \infty)$ which satisfies

$$\mathfrak{L}^{2m}y(i) = y_i, \qquad i = 0, \pm 1, \pm 2, \cdots$$

The problem of calculating the norms of these operators for $p = \infty$ was first posed by Schurer and Cheney [6], who obtained

THEOREM 1 (Schurer and Cheney). Let $\beta = 2 + \sqrt{3}$. Then

$$\| \mathfrak{L}_{n}^{4} \|_{\infty} = 1 + \frac{3}{2} (\beta^{k} - \beta) (\beta^{k} + 1)^{-1} (\beta - 1)^{-1}, \qquad n = 2k$$
(3)
$$= 1 + \frac{3}{2} (\beta^{k} - \beta) (\beta^{k} + \beta) (\beta^{2k} + \beta)^{-1} (\beta - 1)^{-1}, \qquad n = 2k - 1,$$

$$\| \mathfrak{L}^{4} \|_{\infty} = (1 + 3\sqrt{3})/4.$$

Solutions were later obtained by Schurer [5] for m = 3 and Richards [1] for

¹ Sponsored by the United States Army.

Received July 16, 1973.