GEOMETRY OF INTEGRAL SUBMANIFOLDS OF A CONTACT DISTRIBUTION

RV

D. E. $BLAIR¹$ AND K. OGIUE²

1. A differentiable $(2n + 1)$ -dimensional manifold M is said to be a *contact manifold* if it carries a 1-form η such that $\eta \wedge (d\eta)^n \neq 0$. This condition, $\neq 0$. This condition,
ngent) subbundle" *D*
ble. In particular, the roughly speaking, means that the 2n-dimensional "(tangent) subbundle" D defined by $\eta = 0$ is as far from being integrable as possible. In particular, the maximum dimension of an integral submanifold of D is $n \lceil 3 \rceil$. However, not much seems to be known about the immersion of such submanifolds into the ambient space, especially from Riemannian point of view. Thus we consider in this paper a normal contact metric (Sasakian) manifold, especially one with constant ϕ -sectional curvature, and study the immersion of its *n*-dimensional integral submanifolds.

The main result of this paper (Theorem 4.2) is that a compact minimal integral submanifold of a Sasakian space form M is totally geodesic if the square of the length of the second fundamental form is bounded by

$$
\frac{n\{n(\tilde{c}+3)+\tilde{c}-1\}}{4(2n-1)}
$$

 $\frac{n\{n(c + 3) + c - 1\}}{4(2n - 1)}$
where \tilde{c} is the ϕ -sectional curvature of M. In addition to giving other properties of integral submanifolds, we give examples in Section 5 of totally geodesic and minimal nontotally geodesic integral submanifolds.

2. Let M be a contact manifold with contact form η . It is well known that a contact manifold carries an associated almost contact metric structure (ϕ, ξ, η, G) where ϕ is a tensor field of type (1, 1), ξ a vector field, and G a Riemannian metric satisfying

 $\phi^2 = -I + \xi \otimes \eta$, $\eta(\xi) = 1$, $G(\phi X, \phi Y) = G(X, Y) - \eta(X)\eta(Y)$ (2.1) and

$$
\Phi(X, Y) = G(X, \phi Y) = d\eta(X, Y). \tag{2.2}
$$

The existence of tensors ϕ , ξ , η , G on a differentiable manifold M satisfying equations (2.1) is equivalent to a reduction of the structural group of the tangent bundle to $U(n) \times 1$ [2].

Received May 17, 1974.

¹ Partially supported by a National Science Foundation grant.

² Partially supported by a National Science Foundation grant and the Matsunaga Science Foundation.