ON PRIMITIVE PERMUTATION GROUPS WHOSE STABILIZER OF A POINT INDUCES $L_2(q)$ ON A SUBORBIT

BY

ULRICH DEMPWOLFF

1. Introduction

In the following we consider primitive permutation groups G acting on a finite set Ω . If $\alpha \in \Omega$ then G_{α} has a suborbit $\Delta(\alpha)$ such that the group $G_{\alpha}^{\Delta(\alpha)}$ induced on $\Delta(\alpha)$ is isomorphic to $L_2(q)$ and $|\Delta(\alpha)| = q + 1$, where $q \ge 4$ and $q = p^n$, p a prime. We state:

THEOREM. Suppose G satisfies the above conditions then either

(a) $G_{\alpha} \simeq L_2(q)$ or

(b) p > 2 and $G_{\alpha} \simeq L_2(q) \times Y$ where Y is isomorphic to the normalizer of a S_p -subgroup in $L_2(q)$.

The proof of the theorem will follow to a great extent the pattern of the work of C. C. Sims [9]. In this way we get bounds for $|G_{\alpha}|$ and structural informations of G_{α} . Then we use results about irreducible $F_p[L_2(q)]$ -modules. In the case p = 2 also "2-local arguments" will enter. The notation is standard (see [4] and [14]).

2. Preliminary lemmas

In this section we collect some—mostly known—results, which will be used repeatedly.

PROPOSITION 2.1 (Walter, also see [1]). Let G be a finite group having abelian S_2 -subgroups. Then G possesses a normal subgroup H of odd index, such that

$$H/O(H) \simeq X_0 \times X_1 \times \cdots \times X_n$$

where X_0 is an abelian 2-group and X_i $(1 \le i \le n)$ are finite simple groups isomorphic to $L_2(q)$, q suitable, or of type "Janko-Ree" (for the definition of type "Janko-Ree" see [1]).

PROPOSITION 2.2 (Gilman, Gorenstein [2]). Let G be a finite simple group and $S \in Syl_2(G)$. Suppose cl (S) = 2. Then G is isomorphic to one of the following groups:

 $L_2(q), q \equiv 7, 9 \pmod{16}, A_7, Sz(2^n), U_3(2^n), L_3(2^n), or PSp(4, 2^n).$

Received January 15, 1975.