ON THE NUMBER OF RESTRICTED PRIME FACTORS OF AN INTEGER. I

BY

KARL K. NORTON

1. Introduction

Let *E* be an arbitrary nonempty set of (positive rational) prime numbers. For each positive integer *n*, let $\omega(n; E)$ denote the number of distinct primes in *E* which divide *n*, and let $\Omega(n; E)$ be the total number of primes in *E* which divide *n*, counted according to multiplicity. Thus if $n = p_1^{a_1} \cdots p_r^{a_r} n'$, where $r \ge 0$, p_1, \ldots, p_r are distinct primes in *E*, each a_j is a positive integer, and *n'* has no prime factor in *E*, then $\omega(n; E) = r$ and $\Omega(n; E) = a_1 + \cdots + a_r$. When *E* is the set of all primes, we write $\omega(n; E) = \omega(n)$, $\Omega(n; E) = \Omega(n)$. The main objective of this paper and a subsequent one [31] is to derive some very accurate information about the distribution of values of these functions.

In the study of the sizes of $\omega(n; E)$ and $\Omega(n; E)$, an important role is played by the function

(1.1)
$$E(x) = \sum_{p \le x, p \in E} p^{-1}.$$

For example, it is easy to show by the method of [20, Section 22.10] that $\omega(n; E)$ has average order E(n), and the same is true of $\Omega(n; E)$ if E(n) tends to infinity with n. Furthermore, a general theorem of Turán [38] shows in particular that if $E(x) \to +\infty$ as $x \to +\infty$, then each of $\omega(n; E)$ and $\Omega(n; E)$ has normal order E(n). Turán's proof yields a quantitative version of this result which can be stated as follows for $\omega(n; E)$: if $\alpha = \alpha(x) > 0$ and $E(x) \ge 1$, then

(1.2) card
$$\{n: n \leq x \text{ and } |\omega(n; E) - E(x)| \geq \alpha E(x)\} \leq c_1 x / \alpha^2 E(x)$$
.

(Throughout this paper, card *B* denotes the number of members of the set *B*. For $i = 1, 2, ..., c_i(\delta, \varepsilon, ...)$ means a positive number depending only on $\delta, \varepsilon, ...$, while c_i means a positive absolute constant.) In particular,

(1.3) card
$$\{n: n \le x \text{ and } |\omega(n; E) - E(x)| \ge \alpha E(x)\} = o(x)$$

if $E(x) \to +\infty$ and $\alpha E(x)^{1/2} \to +\infty$ as $x \to +\infty$. The result (1.3) was first proved by Hardy and Ramanujan [19] (this paper is reprinted in [33, pp. 262-275]) for the special case in which E is the set of all primes (in this case, it is well known that $E(x) = \log \log x + O(1)$ for $x \ge 2$, and in fact, E(x) can be replaced by $\log \log x$ in (1.3)).

Received August 18, 1975.

AMS 1970 subject classifications. Primary 10A20, 10H15, 10H20, 10H25, 10H99. Secondary 10K20.