ON THE NUMBER OF RESTRICTED PRIME FACTORS OF AN INTEGER. I

BY
Karl K. Norton

1. Introduction

Let E be an arbitrary nonempty set of (positive rational) prime numbers. For each positive integer n, let $\omega(n ; E)$ denote the number of distinct primes in E which divide n, and let $\Omega(n ; E)$ be the total number of primes in E which divide n, counted according to multiplicity. Thus if $n=p_{1}^{a_{1}} \cdots p_{r}^{a_{r}} n^{\prime}$, where $r \geq 0$, p_{1}, \ldots, p_{r} are distinct primes in E, each a_{j} is a positive integer, and n^{\prime} has no prime factor in E, then $\omega(n ; E)=r$ and $\Omega(n ; E)=a_{1}+\cdots+a_{r}$. When E is the set of all primes, we write $\omega(n ; E)=\omega(n), \Omega(n ; E)=\Omega(n)$. The main objective of this paper and a subsequent one [31] is to derive some very accurate information about the distribution of values of these functions.

In the study of the sizes of $\omega(n ; E)$ and $\Omega(n ; E)$, an important role is played by the function

$$
\begin{equation*}
E(x)=\sum_{p \leq x, p \in E} p^{-1} . \tag{1.1}
\end{equation*}
$$

For example, it is easy to show by the method of [20, Section 22.10] that $\omega(n ; E)$ has average order $E(n)$, and the same is true of $\Omega(n ; E)$ if $E(n)$ tends to infinity with n. Furthermore, a general theorem of Turán [38] shows in particular that if $E(x) \rightarrow+\infty$ as $x \rightarrow+\infty$, then each of $\omega(n ; E)$ and $\Omega(n ; E)$ has normal order $E(n)$. Turán's proof yields a quantitative version of this result which can be stated as follows for $\omega(n ; E)$: if $\alpha=\alpha(x)>0$ and $E(x) \geq 1$, then

$$
\begin{equation*}
\operatorname{card}\{n: n \leq x \text { and }|\omega(n ; E)-E(x)| \geq \alpha E(x)\} \leq c_{1} x / \alpha^{2} E(x) \tag{1.2}
\end{equation*}
$$

(Throughout this paper, card B denotes the number of members of the set B. For $i=1,2, \ldots, c_{i}(\delta, \varepsilon, \ldots)$ means a positive number depending only on $\delta, \varepsilon, \ldots$, while c_{i} means a positive absolute constant.) In particular,

$$
\begin{equation*}
\operatorname{card}\{n: n \leq x \text { and }|\omega(n ; E)-E(x)| \geq \alpha E(x)\}=o(x) \tag{1.3}
\end{equation*}
$$

if $E(x) \rightarrow+\infty$ and $\alpha E(x)^{1 / 2} \rightarrow+\infty$ as $x \rightarrow+\infty$. The result (1.3) was first proved by Hardy and Ramanujan [19] (this paper is reprinted in [33, pp. 262-275]) for the special case in which E is the set of all primes (in this case, it is well known that $E(x)=\log \log x+O(1)$ for $x \geq 2$, and in fact, $E(x)$ can be replaced by $\log \log x$ in (1.3)).

[^0]
[^0]: Received August 18, 1975.
 AMS 1970 subject classifications. Primary 10A20, 10H15, 10H20, 10H25, 10H99. Secondary 10K20.

