COMPLEMENTARY 1-ULC PROPERTIES FOR 3-SPHERES IN 4-SPACE

BY

Fredric D. Ancel and D. R. McMillan, Jr.¹

1. Introduction

A recurring theme in geometric topology is the importance of the 1-ULC property. For example, if Σ is an (n-1)-sphere topologically embedded in S^n $(n \neq 4)$, then Σ is flat if and only if $S^n - \Sigma$ is 1-ULC. (See [2], [8], and [5].) If U is a component of $S^n - \Sigma$, it is natural to ask: For which sets $T \subset \Sigma$ is it true that $U \cup T$ is 1-ULC? (Of course, $T = \Sigma$ always works.) For n = 3, R. H. Bing has shown [3] that for some 0-dimensional $T \subset \Sigma$, $U \cup T$ is 1-ULC. For $n \geq 5$, Robert J. Daverman has found [6] a 1-dimensional $T \subset \Sigma$ such that $U \cup T$ is 1-ULC. (It is suspected that the dimension of Daverman's set cannot, in general, be lowered but no example is yet at hand.)

In Theorem 1 we extend Daverman's result to cover the case n=4. Moreover, as constructed our 1-dimensional set T is easily seen to have embedding dimension at most 1 relative to Σ ("dem $_{\Sigma}$ $T \leq 1$ "), in the sense of [13] and [10]. We cannot hope to strengthen Daverman's high-dimensional result to obtain dem $_{\Sigma}$ $T \leq 1$, when $n \geq 5$. For in Theorem 2 we observe that when $n \geq 6$, if T can be found with dem $_{\Sigma}$ $T \leq 1$, then T can be chosen so that dem $_{\Sigma}$ $T \leq 0$. But in [7], Daverman constructs embeddings of Σ in S^n , for all $n \geq 4$, for which T can never be chosen to have dem $_{\Sigma}$ $T \leq 0$. In fact, in these examples T must satisfy dem $_{\Sigma}$ $T \geq n - 3$.

We account for our inability to obtain $\dim_\Sigma T \le 1$ when n > 4 by remarking that for a σ -compactum T in Σ , " $\dim_\Sigma T \le 1$ " is a stronger statement when $\dim \Sigma > 3$ than when $\dim \Sigma = 3$. For when $\dim \Sigma > 3$, $\dim_\Sigma T \le 1$ implies $\Sigma - T$ is 1-ULC. No such implication holds when $\dim \Sigma = 3$. We can appreciate the relative weakness of the statement " $\dim_\Sigma T \le 1$ " when $\dim \Sigma = 3$ in another way: James W. Cannon has observed that when $\dim \Sigma = 3$, " $\dim_\Sigma T \le 1$ " is equivalent to the existence of a 0-dimensional subset S of T such that $(\Sigma - T) \cup S$ is 1-ULC. However when $\dim \Sigma > 3$, any codimension 2 σ -compactum T in Σ contains a 0-dimensional subset S for which $(\Sigma - T) \cup S$ is 1-ULC.

Examples are easily constructed in all dimensions $n \ge 3$ with the property that any subset T of Σ for which $U \cup T$ is 1-ULC must be dense in Σ . Thus the subset T constructed by Daverman and the present authors is, in general, noncompact. In fact, Carl Pixley has noted that for $n \ge 5$, if T is a compact

Received August 18, 1975.

¹ Research of the second author was supported in part by a National Science Foundation grant.