MULTIPLIER SEQUENCES FOR FIELDS

BY
Thomas Craven and George Csordas

1. Introduction

Let F be a field and $\Gamma=\left\{\gamma_{k}\right\}_{k=0}^{\infty}$ be a sequence of elements in F. If for every polynomial

$$
f(x)=\sum_{k=0}^{n} a_{k} x^{k}, \quad a_{k} \in F,
$$

which splits over F, the polynomial $\Gamma[f(x)]=\sum_{k=0}^{n} \gamma_{k} a_{k} x^{k}$ also splits over F, then Γ is called a multiplier sequence for F. In the case when F is the field \mathbf{R} of real numbers this concept was first introduced in 1914 by Pólya and Schur in their celebrated paper [9] entitled Über zwei Arten von Faktorenfolgen in der Theorie der algebraischen Gleichungen. This beautiful paper has been the fountainhead of numerous later investigations. The main result of this work has been hailed by R. P. Boas [1, p. 418] as a "key result on the boundary between Algebra and Analysis." Pólya and Schur have shown that all the multiplier sequences for \mathbf{R} are generated by entire functions which can be uniformly approximated in a neighborhood of zero by polynomials with only real (negative) zeros. (For a precise statement of this result see Section 3.) In subsequent developments, these entire functions found important applications in other fields: for example, in the theory of integral transforms [3], approximation theory [11], the theory of total positivity [4] and probability theory [5].

In this paper, inspired by the work of Pólya and Schur, we investigate and characterize the multiplier sequences for more general fields. In Section 2 we describe some of the intrinsic properties of multiplier sequences and establish the main techniques for analyzing multiplier sequences. Our results primarily concern the algebraic and arithmetic properties a field must have in order to possess a multiplier sequence of a prescribed form. In Section 3 we show that several properties of multiplier sequences for \mathbf{R} are also enjoyed by multiplier sequences of an arbitrary ordered field. Moreover, with the aid of a theorem of Tarski, we are able to provide a particularly useful necessary and sufficient condition for a sequence to be a multiplier sequence for a real closed field (and for certain somewhat more general fields). In fact, it is shown that $\Gamma[f(x)]$ splits for all polynomials $f(x)$ which split and have degree less than or equal to n if and only if $\Gamma\left[(x+1)^{n}\right]$ splits and has all its roots of the same sign. Section 4 is devoted to the complete characterization of multiplier sequences for all finite fields. In the final section we provide a list of open questions.

