A SINGULAR FREE BOUNDARY PROBLEM

by Barry F. Knerr¹

1. Introduction

In 1961 Chernoff [1] studied the problem of sequentially testing whether the drift of a Wiener process is positive or negative, given an a priori normal distribution, and showed that this problem can be reduced to a singular parabolic free boundary problem. A description of Chernoff's formulation and reduction of the problem can also be found in [7]. Briefly, one considers a Wiener-Levy stochastic process $\chi(\tau)$ and an associated process $\xi(\tau)$ with drift μ ; i.e. $\xi(\tau) = \chi(\tau) + \mu \tau$ where μ is an unknown constant whose sign is to be determined.

 μ is considered as a random variable with known a priori normal distribution. The problem then of observation and periodic testing to determine the sign of ξ and hypothesize the sign of μ in such a way as to minimize the expected cost of the operation becomes one of uniformly minimizing the Bayes risk $B(\xi, \tau)$. It is assumed that the cost of an incorrect decision is proportional to $|\mu|$ and that the cost of observation is constant per unit time. Chernoff then shows that B then satisfies the equation

$$\frac{1}{2}B_{\xi\xi} + \frac{\xi}{\tau}B_{\xi} + B_{\tau} + 1 = 0$$

in the continuation region and certain boundary conditions as well. Then, defining a new function u(x, t) in terms of the Bayes risk $B(\xi, \tau)$ and performing a change of variables Chernoff reduces the problem to the following singular parabolic free boundary problem: find a function u(x, t) and a free boundary curve x = s(t) such that

(**P**)

$$u_t - u_{xx} = -1/(2t^2) \text{ for } 0 < x < s(t), \quad 0 < t < T,$$

$$u_x(0, t) = -\frac{1}{2} \text{ for } 0 < t < T,$$

$$u(s(t), t) = u_x(s(t), t) = 0 \text{ for } 0 < t < T,$$

$$s(0) = 0.$$

It should be noted that the conditions on u_x are incompatible at the origin and that the equation is singular at t=0.

¹ This research was supported in part by a National Science Foundation grant.

© 1979 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received December 13, 1977.