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Abstract

In this paper, we construct examples of binary quadratic forms with positive,
unattained minimum. To this end, we investigate the structure of the set of values
taken by a certain class of indefinite forms.

1. Introduction

The work in this paper grew out of an attempt to answer a question posed
by Paul Bateman: construct a binary quadratic form with a non-zero,
unattained minimum. Throughout this paper, f will represent the binary
form with real coefficients given by

(1) f(x, y)=(x—ay)(x—By)

where a and B are both real or are complex conjugate. The minimum of f is
defined as w(f) =inf|f(x, y)| taken over non-zero integer points (x, y).

Examples of the forms sought have been given by Schur (reported by
Remak in [5]), and, independently of the author, by Larry Pinzur. Their
examples were constructed by choosing a and B to have particular bounded
continued fraction expansions. In Remak’s terminology, the forms sought
are ones that are not unimodularly equivalent to minimal forms. The form f,
defined in (1), is a minimal form if |f(x, y)|=1 for all non-zero integer points
(x, ). Now, @ and B have bounded continued fraction expansions if they are
quadratic, that is, each is an irrational solution of a quadratic equation with
rational coefficients. The continued fraction expansions of such numbers are
periodic, therefore, bounded, Again, see [4] for details. Pinzur’s examples,
as the ones presented here, involve only quadratic numbers. In Schur’s
example, a is chosen to be quadratic while B8 has a bounded but non-
periodic expansion. Throughout the rest of this paper, we assume that both
a and B are quadratic.

w(f) is an attained minimum if w(f) =|f(xo, yo)| for some non-zero integer
point (xo, yo). A number of ways of choosing @ and B can be immediately
eliminated as not answering Bateman’s question. If @ and B are not real,
then one easily checks that w(f) is indeed attained. If « is real, but is “too
well” approximable by rationals, then w(f) = 0. By “too well”” approximable,
we mean that for any £>0, |y||x—ay|<e has infinitely many integer
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