THE STRUCTURE OF MINIMA FOR BINARY QUADRATIC FORMS

BY

BENNETT SETZER

Abstract

In this paper, we construct examples of binary quadratic forms with positive, unattained minimum. To this end, we investigate the structure of the set of values taken by a certain class of indefinite forms.

1. Introduction

The work in this paper grew out of an attempt to answer a question posed by Paul Bateman: construct a binary quadratic form with a non-zero, unattained minimum. Throughout this paper, f will represent the binary form with real coefficients given by

(1)
$$f(x, y) = (x - \alpha y)(x - \beta y)$$

where α and β are both real or are complex conjugate. The minimum of f is defined as $\mu(f) = \inf |f(x, y)|$ taken over non-zero integer points (x, y).

Examples of the forms sought have been given by Schur (reported by Remak in [5]), and, independently of the author, by Larry Pinzur. Their examples were constructed by choosing α and β to have particular bounded continued fraction expansions. In Remak's terminology, the forms sought are ones that are not unimodularly equivalent to minimal forms. The form f, defined in (1), is a minimal form if $|f(x, y)| \ge 1$ for all non-zero integer points (x, y). Now, α and β have bounded continued fraction expansions if they are quadratic, that is, each is an irrational solution of a quadratic equation with rational coefficients. The continued fraction expansions of such numbers are periodic, therefore, bounded, Again, see [4] for details. Pinzur's examples, as the ones presented here, involve only quadratic numbers. In Schur's example, α is chosen to be quadratic while β has a bounded but non-periodic expansion. Throughout the rest of this paper, we assume that both α and β are quadratic.

 $\mu(f)$ is an attained minimum if $\mu(f) = |f(x_0, y_0)|$ for some non-zero integer point (x_0, y_0) . A number of ways of choosing α and β can be immediately eliminated as not answering Bateman's question. If α and β are not real, then one easily checks that $\mu(f)$ is indeed attained. If α is real, but is "too well" approximable by rationals, then $\mu(f) = 0$. By "too well" approximable, we mean that for any $\varepsilon > 0$, $|y| |x - \alpha y| < \varepsilon$ has infinitely many integer

Received October 17, 1977.

^{© 1979} by the Board of Trustees of the University of Illinois Manufactured in the United States of America