POSITIVE OPERATORS ON SPACES OF BAIRE FUNCTIONS

BY

C. T. TUCKER

The symbol θ will be used to denote the zero element of any vector space. Suppose L is a Riesz space (lattice ordered vector space). For notation and basic terminology concerning Riesz spaces, the reader is referred to Luxemburg and Zaanen [6]. The sequence f_1, f_2, f_3, \ldots of L is said to be order Cauchy if there exists a sequence $y_1 \ge y_2 \ge \cdots \ge \theta$, $\bigwedge y_n = \theta$ such that, for $m \ge n$, $|f_m - f_n| < y_n$. If every order Cauchy sequence converges, then L is order Cauchy complete. It is order separable if each subset with a supremum has a countable subset with the same supremum. Also, L is almost σ -complete if it is Riesz isomorphic to a subspace L^{\sim} of a σ -complete space M with the property that if $m \in M^+$, there is a sequence $\theta \le u_1 \le u_2 \le \cdots$, $u_n \in L^{\sim}$ such that $\bigvee u_n = m$. In particular, if L is order separable, it is almost σ -complete if it is complete and every disjoint subset of L^+ has a supremum.

Suppose X is a set and Ω is a collection of real valued functions defined on X. Then $B_1(\Omega)$ (the first Baire class of Ω) is the set of all pointwise limits of sequences of Ω , $B_2(\Omega) = B_1(B_1(\Omega))$, and in general if α is an ordinal, $\alpha > 0$, $B_{\alpha}(\Omega)$ is the family of pointwise limits of sequences from $\bigcup_{\alpha > \gamma} B_{\gamma}(\Omega)$. If ω_1 is the first uncountable ordinal then $B_{\omega_1}(\Omega) = B_{\omega_1+1}(\Omega)$ which will be denoted $B(\Omega)$. For a discussion of Baire spaces see Mauldin [7] or [8].

Let LS Ω (lower semi- Ω) be the set of pointwise limits of non-decreasing sequences from Ω , US Ω be the set of pointwise limits of non-increasing sequences in Ω , and Ω^* be the set of bounded functions in Ω .

Spaces of the form $B(\Omega)$ include the set of all A measurable functions for some σ -algebra A and the σ -laterally complete function spaces as discussed in Chapter 7 of Aliprantis and Burkinshaw [1].

A complete ordinary function system Ω is a linear lattice of functions containing the constants which is uniformly closed, which is a ring, and which is closed under inversion (if $f \in \Omega$ and f > 0, then $1/f \in \Omega$). In particular, each space C(X) of all continuous functions on a topological space is a complete ordinary function system and if Ω is a linear lattice containing the constant functions, then $B_1(\Omega)$ is a complete ordinary function system (Mauldin, [7, Theorem 8]).

Received June 20, 1979.

^{© 1981} by the Board of Trustees of the University of Illinois Manufactured in the United States of America