CERTAIN SECONDARY OPERATIONS THAT DETECT INCOMPRESSIBLE MAPS

BY

JAY E. GOLDFEATHER

Introduction

Let $f: X \to K(Z_2, n)$ be a non-trivial map and let im f^* be the subset of $H^*(X; \mathbb{Z}_2)$ induced by f. If all primary Steenrod operations act trivially on im f^* then the incompressibility of such maps cannot be detected by such primary operations. In this paper it is shown that if $H^*(X; \mathbb{Z}_2)$ satisfies certain conditions, there is a sequence of secondary operations that can be used to detect the incompressibility of f. These secondary operations are of the form $Sq^{Q_k}\Phi$ where Φ is a secondary operation and $Q_k = (q_k, \ldots, q_1)$ is an admissible sequence.

Let Φ be a secondary operation associated to the relation $\alpha \circ \beta = 0$. If $x = f^*(\iota_n)$ and $\Phi(x)$ is defined, there is a fibration

$$\Omega K_1 \xrightarrow{i} E \xrightarrow{\pi} K(Z_2, n),$$

a map $\tilde{f}: X \to E$ and an element $w \in H^*(E; \mathbb{Z}_2)$ such that $\Phi(x) = \tilde{f}^*(w) \mod C$ indeterminacy. The following are proved:

THEOREM. Let $f: X \to K(Z_2, n)$ classify $x \in H^n(X; Z_2), Q_k = (q_k, \ldots, q_1)$ be an admissible sequence and Φ be a secondary operation associated with $\alpha \circ \beta = 0$ and defined on x. If for all positive integers k,

- (a) $Sq^{Q_k}(i^*(w)) = \sum_i Sq^{p_{j,k}} v_{j,k}$ where $0 < p_{i,k} \le q_k$ for all j,
- (b) $v_{j,k}$ transgresses to a non-zero element for all j,
- (c) $M_k n < q_k \le M_k$ where $M_k = \deg w + \sum_{i=1}^{k-1} q_i$, (d) $Sq^{Q_k}\Phi(x) \ne 0 \mod (\operatorname{im} Sq^{Q_k}\alpha + \sum_{j,k} \operatorname{im} Sq^{P_j,k})$,

then f is incompressible.

COROLLARY. Let $\pi_n: E_n \to K(\mathbb{Z}_2, n)$ be the universal fibration classifying $x \in \mathbb{Z}_2$ $H^n(X; \mathbb{Z}_2)$ for which x is annihilated by A_2 , the mod 2 Steenrod algebra. π_n is incompressible.

Received August 21, 1980.

^{© 1982} by the Board of Trustees of the University of Illinois Manufactured in the United States of America