THE HOMOLOGY OF THE JAMES-HOPF MAPS

BY

NICHOLAS J. KUHN

If X is a path connected space, there are filtered spaces $C_n X$ and CX which approximate $\Omega^n \Sigma^n X$ and $QX = \lim_{\to} \Omega^n \Sigma^n X$ respectively [11]. Quotients of successive filtrations are the extended power spaces denoted by $D_{n,q}X$ and $D_q X$. Snaith [13], generalizing a result of Kahn [6], showed that

$$\Sigma^{\infty} \Omega^n \Sigma^n X \simeq \bigvee_{q \ge 1} \Sigma^{\infty} D_{n,q} X$$

where $\Sigma^{\infty} Y$ denotes the suspension spectrum of a space Y.

Projection onto the q-th wedge summand and adjunction yield the James-Hopf maps

 $j_q: QX \to QD_qX$ and $j_q: \Omega^n \Sigma^n X \to QD_{n,q}X$.

It is the purpose of this paper to study the induced maps j_{q*} on homology and from this deduce geometric results. All homology will be with Z_2 coefficients.

Our geometric input is the following. Let $D_0X = S^0$. In [2] it is shown that, via passage to quotients of filtrations, the additive E_{∞} -structure on CXinduces an E_{∞} -ring structure on $\prod_{q\geq 0} QD_qX$. Let $j_0 : QX \to QD_0X$ send everything to 1, the identity map in QS^0 . The maps j_q piece together to give a map

$$j: QX \to \prod_{q \ge 0} QD_q X.$$

F. Cohen, R. Cohen, May, and Taylor [2] show that the map j is exponential in the sense that it takes the additive E_{∞} structure on QX to the multiplicative one on $\prod_{q\geq 0} QD_q X$. Also $j_1 : QX \to QX$ is homotopic to the identity and the composite

$$X \xrightarrow{\eta} QX \xrightarrow{J_q} QD_qX$$

is nullhomotopic for q > 1.

Recall that the rich structure of iterated loop spaces allows one to define operations on their homology. Under these operations, $H_*(QX)$ is generated by $H_*(X)$.

Received May 19, 1981.

^{© 1983} by the Board of Trustees of the University of Illinois Manufactured in the United States of America