COARSE TOPOLOGIES IN NONSTANDARD EXTENSIONS VIA SEPARATIVE ULTRAFILTERS

BY

PAUL BANKSTON

0. Introduction

Let **M* be a nonstandard extension (ω_1 -saturated will do) of a suitably large ground model *M*. If $A \in M$ then **A* will denote the image of *A* in **M* under the canonical embedding, and *[*A*] will denote the set {**a* : *a* \in *A*}. If $\langle X, \tau \rangle$ is a topological space in *M* then *[τ] is in general no longer a topology but is a basis for what we call the *coarse topology* on **X*. This is one of two natural topologies one could put on **X* (the other, generated by * τ , is the "*Q*-topology" (see [1], [2], [4], [7], [8]) and is much finer) and is closely related to the "*S*-topology" (see [6], [8]) used in monad constructions in the setting of uniform spaces.

Our interest here is centered on the question of when *X (always with the coarse topology) enjoys some of the usual separation properties. As an example, if $\langle \mathbf{R}, v \rangle$ denotes the real line with its usual topology then $*\mathbf{R}$ can never be a T_0 -space when $*\mathcal{M}$ is ω_1 -saturated. In fact, if $*\mathcal{M}$ is an enlargement (e.g. $*\mathcal{M}$ is $|\mathcal{M}|^+$ -saturated) then *X is never T_0 for infinite X.

As far as we know, it is an open question whether *X can be T_0 when X is infinite and $*\mathcal{M}$ is ω_1 -saturated. However, with the help of extra set theory (notably Martin's Axiom (MA) and the Continuum Hypothesis (CH)), we can construct extensions $*\mathcal{M}$ in which *X can be T_0 (even Tichonov) for a large class of spaces X.

To begin with, we confine our attention to ultrapower extensions $*\mathcal{M} = \prod_D(\mathcal{M})$ where D is a free (that is, nonprincipal) ultrafilter on a countable set I. Then $*\mathcal{M}$ is automatically ω_1 -saturated (since D is countably incomplete) and its elements are equivalence classes $[f] = [f]_D$ of functions $f \in {}^I\mathcal{M}$;

$$[f] = \{g \in {}^{I}\mathcal{M} : \{i \in I : g(i) = f(i)\} \in D\}.$$

In the case of the nonstandard real line, for example, we have [f] * < [g]iff $\{i \in I : f(i) < g(i)\} \in D$. For topological spaces $\langle X, \tau \rangle$, if $U \in \tau$ then $*U = \{[f] : \{i : f(i) \in U\} \in D\}$. (Note that X and *[X] are naturally homeomorphic $(x \mapsto *x \text{ is a homeomorphism})$ and that $*[X] \subseteq *X$ is a dense subset. This is true for any extension $*\mathcal{M}$.)

Received June 23, 1981.

^{© 1983} by the Board of Trustees of the University of Illinois Manufactured in the United States of America