PREDICTION FROM PART OF THE PAST OF A STATIONARY PROCESS

BY

Eric Hayashi

1. Introduction

Let w be the spectral density of a stationary process X(t) ($-\infty < t <$ ∞). It will be assumed that $(\log w)/(1 + x^2)$ is integrable on R with respect to Lebesgue measure. Thus $w(x) = |h(x)|^2$ where h is an outer function in H^2 , the Hardy space for the upper half-plane. Let Z denote the space of measurable functions which are square-integrable against the measure w(x)dx, and let Z(a, b) denote the closed subspace of Z generated by $\{e_t : a \le t \le b\}$ $(e_t(x) \equiv e^{itx})$. The obvious meanings will be ascribed if a or b is $\pm \infty$. The problem studied here is that of approximating orthogonal projection on Z(-a, a). In [5], Dym and McKean worked out a recipe for projection on Z(-a, a), but their solution is difficult to apply. A less general approach was adopted by Segier [10] to work out a projection formula in the case $w = |P|^2/|B|^2$ where P is a polynomial and B is an entire function of finite exponential type. The latter approach will be followed here: under mild assumptions, $Z(-a, a) = Z(-a, \infty) \cap Z(-\infty, a)$, so the desired projection may be approximated by "projecting back and forth" on $Z(-a, \infty)$ and $Z(-\infty, a)$; projection onto these last subspaces is straightforward. How good this scheme is depends upon structural properties of the weight w. This is discussed in Sections 3 and 4; a connection between these approximations and strong mixing is given in Section 5.

2. Preliminaries

Let L^2 denote the Hilbert space of functions on R which are squaresummable with respect to Lebesgue measure. Then the map $S: f \to hf$ is an isometry of Z into L^2 . Moreover, since h is outer, S is surjective (See [5], p. 97) and maps $Z(-\infty, a)$ and $Z(a, \infty)$ respectively onto $(e_ah/\bar{h})\bar{H}^2$ and e_aH^2 (where the bar denotes complex conjugation). The following notation will be used:

- (1) P_a is projection onto $e_a H^2$ in L^2 ;
- (2) Q_a is projection onto $(e_a h/\overline{h})\overline{H}^2$;

Received August 17, 1981.

© 1983 by the Board of Trustees of the University of Illinois Manufactured in the United States of America