1. Let K be a field with a non-trivial non-Archimedean valuation $|\cdot|$. Let E be a Banach space over K with norm $\|\cdot\|$. The unit ball $V = \{\lambda \in K : |\lambda| \leq 1\}$ is the valuation ring of K. Let E be a module over this ring. A nonempty subset A of E is called absolutely convex if it is a V-module of E; that is, if $a, b \in A$ and $\lambda, \mu \in V$, then $\lambda a + \mu b \in A$. A coset of an absolutely convex subset is said to be convex. A subset A of E is said to be compactoid if for every $\varepsilon > 0$ there exists a finite set $X \subseteq E$ such that $A \subseteq \{x \in E : \|x\| \leq \varepsilon\} + \overline{C}_oX$, where \overline{C}_oX denotes the closed convex hull of X (A. van Rooij [5], p. 134). The problem which we consider in this section is the following.

Let A and B be closed convex subsets of E. Under what circumstances is the subset $A + B$ closed? It is well known that if A is compact, then $A + B$ is closed. Further, A. van Rooij [5] has shown that if K is spherically complete and A is compactoid, $A + B$ is closed. By applying the results in this section to continuous linear operators, we can obtain Banach’s closed range theorem and the Fredholm alternative theorem in non-Archimedean Banach space. In L. Narici, E. Beckenstein and G. Bachman [3, p. 91], the Fredholm alternative theorem is mentioned for the completely continuous operator. In Section 3, we shall extend it to compact operators as defined by A. van Rooij [6, p. 142]. The existence of the nonzero completely continuous linear operator implies that K is locally compact. However, even if K is not locally compact, there exists a nonzero compact linear operator of E to F, when E and F are Banach spaces [6, p. 182].

First we show the following result.

Lemma 1. Let A and B be subsets of E. If A is open and convex, then $A + B$ is closed. In particular, every open convex subset of E is closed.