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ON THE NOVIKOV AND BOONE-BORISOV GROUPS
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In Memoriam W.W. Boone

1. Introduction

In the history of word problems in group theory the fundamental role was
played by pioneering works of P.S. Novikov [1] and W. Boone [2]. The
construction by Novikov in [1] of the centrally-symmetric group %A = %A,
has never been given any further analysis different from [1]. The construction
of Boone’s group G(T, q) [2] was analysed by many authors who introduced a
number of groups which may be called the modifications of Boone’s construc-
tion (for example, see [3], [4], [S]). One of these modifications is the construc-
tion due to V.V. Borisov [6]. We call the group I'(II, P) from Borisov’s work
the Boone-Borisov group.

Our aim in this note is to make a survey of the author’s recent results on the
groups % and I'(II, P). The group A has the “big” subgroup A ,, ,,

THEOREM 1.  Novikov’s group N ,,,, has a standard basis.

This theorem was announced by the author in [7). Theorem 1 provides a
comparatively short proof for the criterion of equality of words in % ;,,, which
is the main theorem of chapters I-IV of [1] (the remaining two chapters V, VI
of [1] treat some nongroup combinatorial calculus).

THEOREM 2. The Boone-Borisov group T'(I1, P) has a standard basis.

From Theorem 2 it is comparatively easy to deduce that the word problem
in I'(I1, P) is Turing (or even truth-table) equivalent to the problem of the
equality to the word P in the initial semigroup II. Since for any Turing
(truth-table) degree of unsolvability a there exists a f.p. semigroup in which for
example the problem of the equality to the empty word has just the given
degree of unsolvability, it follows that the Boone-Borisov group may have
arbitrary Turing (truth-table) degree of unsolvability. The existence of f.p.
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