ON THE NOVIKOV AND BOONE-BORISOV GROUPS

BY

L.A. BOKUT'

In Memoriam W.W. Boone

1. Introduction

In the history of word problems in group theory the fundamental role was played by pioneering works of P.S. Novikov [1] and W. Boone [2]. The construction by Novikov in [1] of the centrally-symmetric group $\mathfrak{A} = \mathfrak{A}_{pd\mu l\rho}$ has never been given any further analysis different from [1]. The construction of Boone's group G(T, q) [2] was analysed by many authors who introduced a number of groups which may be called the modifications of Boone's construction (for example, see [3], [4], [5]). One of these modifications is the construction due to V.V. Borisov [6]. We call the group $\Gamma(\Pi, P)$ from Borisov's work the Boone-Borisov group.

Our aim in this note is to make a survey of the author's recent results on the groups \mathfrak{A} and $\Gamma(\Pi, P)$. The group \mathfrak{A} has the "big" subgroup \mathfrak{A}_{dulo} .

THEOREM 1. Novikov's group $\mathfrak{A}_{du \mid p}$ has a standard basis.

This theorem was announced by the author in [7]. Theorem 1 provides a comparatively short proof for the criterion of equality of words in $\mathfrak{A}_{d\mu l\rho}$ which is the main theorem of chapters I-IV of [1] (the remaining two chapters V, VI of [1] treat some nongroup combinatorial calculus).

THEOREM 2. The Boone-Borisov group $\Gamma(\Pi, P)$ has a standard basis.

From Theorem 2 it is comparatively easy to deduce that the word problem in $\Gamma(\Pi, P)$ is Turing (or even truth-table) equivalent to the problem of the equality to the word P in the initial semigroup Π . Since for any Turing (truth-table) degree of unsolvability α there exists a f.p. semigroup in which for example the problem of the equality to the empty word has just the given degree of unsolvability, it follows that the Boone-Borisov group may have arbitrary Turing (truth-table) degree of unsolvability. The existence of f.p.

Received Sept. 10, 1985.