DEFINABILITY IN THE TURING DEGREES¹

BY

THEODORE A. SLAMAN AND W. HUGH WOODIN

In Memoriam W.W. Boone

1. Introduction

Definability has provided the most fruitful approach to understanding the model-theoretic structure of \mathcal{D} , the Turing degrees ordered by Turing reducibility.

The origin of this approach is Spector's result [9] that every countable ideal in \mathcal{D} is uniformly definable from parameters in \mathcal{D} . Spector's theorem also shows that the first order theory of \mathcal{D} includes an interpretation of quantification over such ideals.

Simpson [8] used this result, the embedding theorems for upper semi-lattices as initial segments of \mathcal{D} , and a coding of models of arithmetic as initial segments of \mathcal{D} , to show that there is a faithful interpretation of second order arithmetic in the first order theory of \mathcal{D} . In this interpretation, second order quantification over the coded model of arithmetic is interpreted by quantification over ideals in \mathcal{D} .

Nerode and Shore [4], [5] gave a simplified way to code models by initial segments. With their method of coding, the degree of the code of a set of integers is close to the degree of the set itself. They applied their method of coding to show that every automorphism of \mathcal{D} with a predicate for the arithmetic degrees is the identity on a cone of degrees. Subsequently, see [2, Harrington-Shore] and [3, Jockusch-Shore], the arithmetic degrees were shown to be definable in \mathcal{D} . The best result currently known is that every automorphism is the identity on the cone above 0^{ω} and maps every degree to one arithmetic in it. In further work, Shore [7] showed that the relation " \vec{c} is a code for an element of x" is first order definable in \mathcal{D} for those x above 0^{ω} . This last result explains why every automorphism is the identity above 0^{ω} . Namely, both \vec{c} and its isomorphic image must code the same set of integers, so the degree of the set coded by \vec{c} must be fixed by any isomorphism. Shore's result

© 1986 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received May 24, 1985.

¹The authors were partially supported by grants from the National Science Foundation. Thanks are due to Klaus Ambos-Spies who pointed out the application of Welch's Theorem in Section 4, and to Marcia Groszek for reviewing the preliminary version of this paper.