OPERATORS INTERPOLATING BETWEEN RIESZ POTENTIALS AND MAXIMAL OPERATORS

BY

DANIEL M. OBERLIN¹

1. Introduction

Let λ be normalized Lebesgue measure on either the unit ball or the unit sphere in \mathbb{R}^n and write λ , for the dilate of λ defined by

$$\langle f, \lambda_r \rangle = \int_{\mathbf{R}^n} f(rx) \, d\lambda(x), \quad r > 0.$$

Suppose $1 \le p \le q \le \infty$, $1 \le s \le \infty$ and suppose f is continuous with compact support. When λ is the measure on the ball, define

$$S_{p,q,s}f(x) = \left[\int_0^\infty |r^{n/p-n/q}\lambda_r * f(x)|^s \frac{dr}{r}\right]^{1/s},$$
$$S_{p,q,\infty}f(x) = \sup_{r>0} r^{n/p-n/q} |\lambda_r * f(x)|.$$

When λ is the measure on the sphere, define operators $T_{p,q,s}$ and $T_{p,q,\infty}$ analogously. For nonnegative f, both $S_{p,q,1}f$ and $T_{p,q,1}f$ are multiples of the Riesz potential $I_{\alpha}(f)$ when $\alpha = n/p - n/q$. Hence $S_{p,q,1}$ and $T_{p,q,1}$ are bounded from $L^p(=L^p(\mathbb{R}^n))$ to L^q whenever 1 . On the other $hand, <math>S_{p,q,\infty}$ and $T_{p,q,\infty}$ are maximal operators, weighted to allow the possibility of $L^p - L^q$ boundedness. Indeed, $S_{p,p,\infty}$ is the Hardy-Littlewood maximal operator and therefore bounded on L^p for $1 , while <math>T_{p,p,\infty}$ is the spherical maximal operator, now known to be bounded on L^p when n/(n-1) (see [7], [2]). In general, and especially when <math>s = 2, the functions $S_{p,q,s}f$ and $T_{p,q,s}f$ are reminiscent of g-functions. The purpose of this paper is to begin the study of the following question:

For what values of p, q, and s is $T_{p,q,s}$ bounded from L^p to L^q ?

© 1989 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received February 18, 1987.

¹Partially supported by a grant from the National Science Foundation.