THE 4-CLASS RANKS OF QUADRATIC EXTENSIONS OF CERTAIN IMAGINARY QUADRATIC FIELDS

BY
Frank Gerth III

1. Introduction and statement of main result

Let K be a quadratic extension of the field of rational numbers \mathbf{Q}. Let C_{K} be the 2-class group of K in the narrow sense. Then it is a classical result that $\operatorname{rank} C_{K}=t-1$, where t is the number of primes that ramify in K / \mathbf{Q}. Let R_{K} be the 4 -class rank of K in the narrow sense; i.e.,

$$
R_{K}=\operatorname{rank} C_{K}^{2}=\operatorname{dim}_{\mathbf{F}_{2}}\left(C_{K}^{2} / C_{K}^{4}\right)
$$

Here F_{2} is the finite field with two elements, and C_{K}^{2} / C_{K}^{4} is an elementary abelian 2-group which we are viewing as a vector space over \mathbf{F}_{2}. In [6] we have presented results which specify how likely it is for $R_{K}=0,1,2, \ldots$, both for imaginary quadratic extensions of \mathbf{Q} and for real quadratic extensions of \mathbf{Q}.

Suppose now we replace the base field \mathbf{Q} by an imaginary quadratic field F whose class number is odd, and suppose K is a quadratic extension of F. We let C_{K} denote the 2-class group of K. Then rank $C_{K}=t-1-\beta$, where t is the number of primes that ramify in K / F, and $\beta=0$ or 1 . (See Equation 3.5 for more details.) We let R_{K} denote the 4-class rank of K, and we ask the following question: how likely is $R_{K}=0,1,2, \ldots$? Since the 2-class groups of both F and \mathbf{Q} are trivial, and since the groups of units in the rings of integers of F and \mathbf{Q} are finite cyclic groups, there is a reasonable expectation that the 4-class ranks of quadratic extensions of F will exhibit a behavior similar to the 4-class ranks of quadratic extensions of \mathbf{Q}.

To make the situation more precise, we introduce some notation. We let \mathcal{O}_{F} denote the ring of integers of F. For a nonzero ideal I of \mathcal{O}_{F}, we let $N(I)$ denote the absolute norm of I. Equivalently $N(I)=\left[\mathcal{O}_{F}: I\right]$. For a quadratic extension K of F, we let $D_{K / F}$ denote the relative discriminant. For each

Received February 2, 1987.

