THE 4-CLASS RANKS OF QUADRATIC EXTENSIONS OF CERTAIN IMAGINARY QUADRATIC FIELDS

BY

FRANK GERTH III

1. Introduction and statement of main result

Let K be a quadratic extension of the field of rational numbers \mathbb{Q} . Let C_K be the 2-class group of K in the narrow sense. Then it is a classical result that rank $C_K = t - 1$, where t is the number of primes that ramify in K/\mathbb{Q} . Let R_K be the 4-class rank of K in the narrow sense; i.e.,

$$R_K = \operatorname{rank} C_K^2 = \dim_{\mathbf{F}_2} (C_K^2 / C_K^4).$$

Here \mathbf{F}_2 is the finite field with two elements, and C_K^2/C_K^4 is an elementary abelian 2-group which we are viewing as a vector space over \mathbf{F}_2 . In [6] we have presented results which specify how likely it is for $R_K = 0, 1, 2, \ldots$, both for imaginary quadratic extensions of \mathbf{Q} and for real quadratic extensions of \mathbf{Q} .

Suppose now we replace the base field \mathbf{Q} by an imaginary quadratic field F whose class number is odd, and suppose K is a quadratic extension of F. We let C_K denote the 2-class group of K. Then rank $C_K = t - 1 - \beta$, where t is the number of primes that ramify in K/F, and $\beta = 0$ or 1. (See Equation 3.5 for more details.) We let R_K denote the 4-class rank of K, and we ask the following question: how likely is $R_K = 0, 1, 2, \ldots$? Since the 2-class groups of both F and \mathbf{Q} are trivial, and since the groups of units in the rings of integers of F and \mathbf{Q} are finite cyclic groups, there is a reasonable expectation that the 4-class ranks of quadratic extensions of F will exhibit a behavior similar to the 4-class ranks of quadratic extensions of \mathbf{Q} .

To make the situation more precise, we introduce some notation. We let \mathcal{O}_F denote the ring of integers of F. For a nonzero ideal I of \mathcal{O}_F , we let N(I) denote the absolute norm of I. Equivalently $N(I) = [\mathcal{O}_F: I]$. For a quadratic extension K of F, we let $D_{K/F}$ denote the relative discriminant. For each