CHARACTERIZATION OF BANACH SPACES OF CONTINUOUS VECTOR VALUED FUNCTIONS WITH THE WEAK BANACH-SAKS PROPERTY

BY

CARMELO NUÑEZ¹

Introduction

A Banach space E is said to have the Banach-Saks property (resp. weak Banach-Saks property) if for every bounded sequence (resp. weakly convergent sequence) (x_n) in E, you can choose a subsequence (x'_n) of (x_n) such that the sequence

$$(y_n) = \left(\frac{x_1' + \cdots + x_n'}{n}\right)$$

converges in the E-norm.

We shall refer to these properties as the B.S.P. and the W.B.S.P.

It is known that a Banach space E with the B.S.P. is reflexive. So, it is clear that a C(K) space (being C(K), the Banach space of the continuous functions from K to \mathbf{R} , and being K, a compact Hausdorff space) has the B.S.P. iff K is finite.

Much more interesting in this context of C(K) spaces is the W.B.S.P. The following characterization of C(K) spaces with the W.B.S.P. is due essentially to N. Farnum (see [2]).

THEOREM 1. Let K be a compact Hausdorff space. Then C(K) possesses the W.B.S.P. if and only if

$$K^{(\omega)} = \bigcap_{n=1}^{\infty} K^{(n)} = \emptyset$$

where $K^{(0)} = K$ and $K^{(n)}$ is the set of all accumulation points of $K^{(n-1)}$ for $n \in \mathbb{N}$.

Received January 6, 1987.

¹Supported in part by a CAICYT grant.

The author wishes to thank Professor F. Bombal and the referee for their advice.

^{© 1989} by the Board of Trustees of the University of Illinois Manufactured in the United States of America