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FIXED POINTS OF ISOMETRIES AT INFINITY IN
HOMOGENEOUS SPACES

BY
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Introduction

Let M be a simply connected homogeneous riemannian manifold of non-
positive curvature. Since M admits a simply transitive and solvable Lie group
G of isometrics, it can be represented as the Lie group G endowed with a left
invariant metric of nonpositive curvature. If is the Lie algebra of G then
,q [,, ,,a] e where , the orthogonal complement of [, ,q] in ,,a with
respect to the metric, is an abelian subalgebra of

In this paper, we describe the set of fixed points of G at infinity and we
classify all isometrics defined by elements of G when M has no de Rham flat
factor; more precisely, we show that the elements of [G, G] are parabolic and
the hyperbolic elements of G are those conjugate to exp(u).

In Section 1, we study the action of right invariant vector fields on the
geodesics /z(t)= exp tZ with Z e. All stable Jacobi fields on 3’z are
determined on certain regular dements Z of e (Corollary 1.3). Section 2 is
devoted to describe, for each Z in e, the subgroups of G that fix
(Corollary 2.6). In the third section, the set of fixed points of G at infinity is
described (Theorem 3.4) and all isometrics coming from left translations by
elements of G are classified (Corollaries 3.7 and 3.9). In particular, if M is not
a visibility manifold and I(M) (or Io(M)) has a fixed point at infinity (for
instance if M is not symmetric) this point is necessarily a fiat point at infinity
(Corollary 3.5).

Finally, in Section 4 we summarize some results about the points at infinity
that can be joined by a geodesic to a fixed point of G.

Preliminaries

Let M denote a complete and simply connected riemannian manifold of
nonpositive curvature (K < 0). All geodesics in M are assumed to have unit
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