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G-FIBER HOMOTOPY EQUIVALENCE
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Introduction and preliminaries

Let G be a compact, connected Lie group, and V, W two complex G-mod-
ules. Denote the unit spheres by SV, SW. In this article we shall be concerned
with maps over BG,

xd.s.v, sv) /; xd sw, sw

B

where EG BG is a universal G-bundle. Such maps are studied in [9]. It can
be easily seen that they are exactly those induced by equivadant maps
EG SV SW, i.e., by the so-called Goo-maps SV SW. We shall say that
f is a Goo-equioalence if, and only if, f is the degree-one map on the fibers.
Note that according to Dold’s theorem [8] a Goo-equivalence is a fiber-homo-
topy equivalence, and therefore it admits a Goo-equivalence as an inverse. Also
note that, in the equivariant case, the notion of a G-equivalence is just the
notion of quasi-equivalence introduced in [13]. We shall say that the Goo-
equivalence SV SW is special if, and only if, it induces a T-equivalence

( sv, svr, sv) --, (sw, swr, sw),
where T c G is a maximal toms. It is easy to see that a degree-one G-map is
special [11].

In this article we first study how V and W are related to each other, given
that SV and SW are Goo-equivalent. The answer is formulated in terms of an
appropriate K-theoretic degree, with values in the completion R(G) of the
representation ring, defined in the manner of [12] and [7] and denoted by
degc f. We shall say that degc f is rational if, and only if, it lies in R(G). It
will be shown in {}2 below that deg f is rational if V--- W and f is a
Goo-equivalence, or if f is equivariant. However, the inverse of a degree-one
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