COMPACT HANKEL OPERATORS ON THE BERGMAN SPACE

BY

KAREL STROETHOFF

1. Introduction

Let $\mathbf{D} = \{z \in \mathbb{C}: |z| < 1\}$ denote the open unit disk in the complex plane C, and let A denote the usual Lebesgue area measure on C. For $1 \le p < \infty$ and $f: \mathbf{D} \to \mathbb{C}$ Lebesgue measurable let $||f||_p = (\int_{\mathbf{D}} |f|^p dA/\pi)^{1/p}$. The Bergman space $L_a^p(\mathbf{D})$ is the Banach space of analytic functions $f: \mathbf{D} \to \mathbb{C}$ such that $||f||_p < \infty$. The Bergman space $L_a^2(\mathbf{D})$ is a Hilbert space; it is a closed subspace of the Hilbert space $L^2(\mathbf{D}, dA/\pi)$ with inner product given by

$$\langle f,g\rangle = \int_{\mathbf{D}} f(z)\overline{g(z)} \, dA(z)/\pi,$$

for $f, g \in L^2(\mathbf{D}, dA/\pi)$. Let P denote the orthogonal projection of $L^2(\mathbf{D}, dA/\pi)$ onto $L^2_a(\mathbf{D})$. The map I - P is the orthogonal projection of $L^2(\mathbf{D}, dA/\pi)$ onto $L^2_a(\mathbf{D})^{\perp}$ (the orthogonal complement of $L^2_a(\mathbf{D})$ in $L^2(\mathbf{D}, dA/\pi)$). For a function $f \in L^{\infty}(\mathbf{D}, dA/\pi)$, the Hankel operator H_f : $L^2_a(\mathbf{D}) \to L^2_a(\mathbf{D})^{\perp}$ is defined by

$$H_f g = (I - P)(fg), \quad g \in L^2_a(\mathbf{D}).$$

It is clear that H_f is a bounded operator for every function $f \in L^{\infty}(\mathbf{D}, dA/\pi)$. In [2], Sheldon Axler raised the question of finding necessary and sufficient conditions on the function $f \in L^{\infty}(\mathbf{D}, dA/\pi)$ for the Hankel operator H_f to be compact. Sheldon Axler answered a special case of this problem in [3] where he considered conjugate analytic symbols. The "little Bloch" space \mathscr{B}_{o} is the set of all analytic functions f on \mathbf{D} for which

$$(1 - |z|^2)f'(z) \to 0$$
 as $|z| \to 1^-$.

Axler proved that for a function f in $L^2_a(\mathbf{D})$ (perhaps unbounded) the (densely defined) Hankel operator $H_{\bar{f}}$ is compact if and only if $f \in \mathscr{B}_o$. In [8], Kehe Zhu characterized the functions $f \in L^\infty(\mathbf{D}, dA/\pi)$ such that both Hankel operators H_f and $H_{\bar{f}}$ are compact. In this paper we will characterize the

Received March 2, 1988.

^{© 1990} by the Board of Trustees of the University of Illinois Manufactured in the United States of America