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1. Introduction

Let D { z C" zl < 1} denote the open unit disk in the complex plane
C, and let A denote the usual Lebesgue area measure on C. For 1 < p < oo
and f: D --, C Lebesgue measurable let Ilfllp (/Dill Dr)X/P. The
Bergman space L[(D) is the Banach space of analytic functions f: D --, C
such that [Ifl[, < oo. The Bergman space L2(D) is a Hilbert space; it is a
dosed subspace of the Hilbert space L2(D, dA/r) with inner product given by

g> f (z)g(z)
for f, g L2(D, dA/r). Let P denote the orthogonal projection of
L2(D, dA/r) onto L2a(D). The map I- P is the orthogonal projection of
L2(D, dA/r) onto L2a(D) "L (the orthogonal complement of L2a(D)
in L2(D, dA/r)). For a function f L(D, dA/r), the Hankel operator HI:
L2a(D) __, L2a(D)l is defined by

H/g (I- P)(fg), g - L2a(D).

It is dear that H/is a bounded operator for every function f L(D, dA/rr).
In [2], Sheldon Axler raised the question of finding necessary and sufficient
conditions on the function f L*(D, dA/cr) for the Hankel operator HI to
be compact. Sheldon Axler answered a special case of this problem in [3]
where he considered conjugate analytic symbols. The "little Bloch" space o
is the set of all analytic functions f on D for which

(1 Izl2)f’(z) ---, 0 as Izl --" 1-.

Axler proved that for a function f in L2a(D) (perhaps unbounded) the (densely
defined) Hankel operator H! is compact if and only if f o. In [8], Kehe
Zhu characterized the functions f L(D, dA/rr) such that both Hankel
operators HI and H! are compact. In this paper we will characterize the
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