INTERPOLATION SETS FOR LIPSCHITZ FUNCTIONS ON CURVES OF THE UNIT SPHERE

BY

CARME CASCANTE¹

Introduction and statement of results

Let *B* denote the unit ball in \mathbb{C}^n , and *S* its boundary. For $\alpha \in (0, 1]$, $Lip_{\alpha}(B)$ will denote the space of holomorphic functions in *B* satisfying a Lipschitz condition of order α with respect to the Euclidean distance. For a closed set $I \subset \mathbf{R}$, and $0 < \alpha < 1$, $\Lambda_{\alpha}(I)$ will denote the space of Lipschitz functions on *I*, and $\Lambda_1(I)$ the Zygmund class.

We also consider the Koranyi pseudodistance $d(z, w) = |1 - \overline{z}w|$, for $z, w \in S$, where

$$\bar{z}w = \sum_{i=1}^n \bar{z}_i w_i.$$

This defines a pseudodistance only on S, but we will as well consider it when one of the two variables is on \overline{B} .

We will work with a simple (without intersections) periodic curve of class $C^3 \gamma: \mathbf{R} \to S$. With a suitable parametrization (arc-length plus a dilatation) we will suppose from now on that γ is 2π -periodic and that there exists $\lambda > 0$ such that for each t, $|\gamma'(t)|^2 = \lambda$. We will write $I = [-\pi, \pi]$ and $\Gamma = \gamma(I)$. We will not distinguish between $\gamma(t)$ and its corresponding parameter on I.

Related to γ we introduce the *index of transversality*, $T: I \rightarrow \mathbf{R}$, given by

(1)
$$-iT(x) = \overline{\gamma'(x)} \gamma(x), \quad x \in I.$$

Complex-tangential curves (i.e. $\gamma'(t) \in P_{\gamma(t)}$ where $P_{\gamma(t)}$ is the complextangential space at $\gamma(t)$) correspond to T = 0 and transverse curves to $|T(x)| \ge M$. We introduce the set *E* of *complex-tangential* points of Γ , given by

(2)
$$E = \gamma(\{x \in I/T(x) = 0\}) = \{\zeta \in I/T_{\zeta} \Gamma \subset P_{\zeta}\}$$

where $T_{\zeta}\Gamma$ is the tangent space of Γ at ζ .

© 1990 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received June 20, 1988.

¹This work has been supported in part by a grant from the C.I.C.Y.T.