INTERPOLATION SETS FOR LIPSCHITZ FUNCTIONS ON CURVES OF THE UNIT SPHERE

BY
Carme Cascante ${ }^{1}$

Introduction and statement of results

Let B denote the unit ball in \mathbf{C}^{n}, and S its boundary. For $\alpha \in(0,1]$, $\operatorname{Lip}_{\alpha}(B)$ will denote the space of holomorphic functions in B satisfying a Lipschitz condition of order α with respect to the Euclidean distance. For a closed set $I \subset \mathbf{R}$, and $0<\alpha<1, \Lambda_{\alpha}(I)$ will denote the space of Lipschitz functions on I, and $\Lambda_{1}(I)$ the Zygmund class.

We also consider the Koranyi pseudodistance $d(z, w)=|1-\bar{z} w|$, for $z, w \in S$, where

$$
\bar{z} w=\sum_{i=1}^{n} \bar{z}_{i} w_{i}
$$

This defines a pseudodistance only on S, but we will as well consider it when one of the two variables is on \bar{B}.

We will work with a simple (without intersections) periodic curve of class $C^{3} \gamma: \mathbf{R} \rightarrow S$. With a suitable parametrization (arc-length plus a dilatation) we will suppose from now on that γ is 2π-periodic and that there exists $\lambda>0$ such that for each $t,\left|\gamma^{\prime}(t)\right|^{2}=\lambda$. We will write $I=[-\pi, \pi]$ and $\Gamma=\gamma(I)$. We will not distinguish between $\gamma(t)$ and its corresponding parameter on I.

Related to γ we introduce the index of transversality, $T: I \rightarrow \mathbf{R}$, given by

$$
\begin{equation*}
-i T(x)=\overline{\gamma^{\prime}(x)} \gamma(x), \quad x \in I \tag{1}
\end{equation*}
$$

Complex-tangential curves (i.e. $\gamma^{\prime}(t) \in P_{\gamma(t)}$ where $P_{\gamma(t)}$ is the complextangential space at $\gamma(t)$) correspond to $T=0$ and transverse curves to $|T(x)| \geq M$. We introduce the set E of complex-tangential points of Γ, given by

$$
\begin{equation*}
E=\gamma(\{x \in I / T(x)=0\})=\left\{\zeta \in I / T_{\zeta} \Gamma \subset P_{\zeta}\right\} \tag{2}
\end{equation*}
$$

where $T_{\zeta} \Gamma$ is the tangent space of Γ at ζ.

[^0]
[^0]: Received June 20, 1988.
 ${ }^{1}$ This work has been supported in part by a grant from the C.I.C.Y.T.

