HOMOGENIZABLE RELATIONAL STRUCTURES

BY

JACINTA COVINGTON

In this paper we consider certain classes of relational structures which do not have the Amalgamation Property, and hence do not have a universal homogeneous structure, but which can be made to satisfy the Amalgamation Property by the imposition of some additional structure. We thus obtain a class which is the age of a homogeneous structure, and which has the original class as 'underlying structures.' We show that the underlying structure of the countable universal homogeneous structure has a model complete theory, so is a model comparison for its universal theory.

In Section 1 we first define homogenizations and homogenizable classes then introduce the notion of Local Failure of Amalgamation. Section 2 is devoted to stating and proving Theorem 2.1, which gives a sufficient condition for a class of structures to be homogenizable. This condition involves Local Failure of Amalgamation. In Section 3 we show that the theory of the 'homogenized' structure is model complete.

1. Homogenizable structures

DEFINITION 1.1. Let \mathscr{L} be a purely relational first-order language, and let \mathscr{C} be a class of \mathscr{L} -structures. The age of an \mathscr{L} -structure Γ is the class of structures isomorphic to finite substructures of Γ . Γ is homogeneous if every isomorphism between finite substructures of Γ extends to an automorphism of Γ . \mathscr{C} has the *Hereditary Property* (HP) if all substructures of members of \mathscr{C} belong to \mathscr{C} . \mathscr{C} has the *Joint Embedding Property* (JEP) if whenever $A, B \in \mathscr{C}$, there is a structure $D \in \mathscr{C}$ embedding both A and B. \mathscr{C} has the *Amalgamation Property* (AP) if for all embeddings $\alpha: C \to A$ and $\beta: C \to B$ between C-structures A, B and C, there is a structure $D \in \mathscr{C}$ and embeddings $\gamma:$ $A \to D$ and $\delta: B \to D$ such that $\alpha\gamma = \beta\delta$.

In 1953, Fraïssé showed that the Amalgamation Property is a crucial condition for the existence of a homogeneous structure with a given age.

Received July 18, 1988.

 $[\]textcircled{\sc 0}$ 1990 by the Board of Trustees of the University of Illinois Manufactured in the United States of America