ADDITIVE DERIVATIONS OF SOME OPERATOR ALGEBRAS

by Peter Šemrl¹

1. Introduction

All algebras and vector spaces in this note will be over **F** where **F** is either the real field or the complex field. Let \mathscr{A} be an algebra and \mathscr{A}_1 any subalgebra of \mathscr{A} . An additive (linear) mapping $D: \mathscr{A}_1 \to \mathscr{A}$ is called an additive (linear) derivation if

(1)
$$D(ab) = aD(b) + D(a)b$$

holds for all pairs $a, b \in \mathscr{A}_1$. Let X be a normed linear space. By $\mathscr{B}(X)$ we mean algebra of bounded linear operators on X. We denote by $\mathscr{F}(X)$ the subalgebra of bounded finite rank operators. We shall call a subalgebra \mathscr{A} of $\mathscr{B}(X)$ standard provided \mathscr{A} contains $\mathscr{F}(X)$.

This research is motivated by the well-known results in [2], [3].

THEOREM 1.1. Let X be a normed space and let \mathscr{A} be a standard operator algebra on X. Then every linear derivation D: $\mathscr{A} \to \mathscr{B}(X)$ is of the form

$$D(A) = AT - TA$$

for some $T \in \mathscr{B}(X)$.

THEOREM 1.2. Let \mathscr{A} be a semi-simple Banach algebra. Let $D: \mathscr{A} \to \mathscr{A}$ be an additive derivation. Then \mathscr{A} contains a central idempotent e such that $e\mathscr{A}$ and $(1 - e)\mathscr{A}$ are closed under D, $D|_{(1-e)\mathscr{A}}$ is continuous and $e\mathscr{A}$ is finite dimensional.

Using these two results one can easily see that every additive derivation D: $\mathscr{B}(X) \to \mathscr{B}(X)$, where X is an infinite dimensional Banach space, is inner. In this note we shall give a complete description of all additive derivations on

© 1991 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received February 9, 1989.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 47B47; Secondary 47D25. ¹This work was supported by the Research Council of Slovenia.