SOME REMARKS ON COMPLEX POWERS OF $(-\Delta)$ AND UMD SPACES

BY

Sylvie Guerre-Delabriere

Introduction and notations

If X is a Banach space, $(\Omega, \mathscr{A}, \mu)$ a measure space and $1 \le p < +\infty$, we will denote by $L_p(\Omega, X)$ $(L_p(\Omega)$ if $X = \mathbb{R}$), the Banach space of classes of Bochner measurable functions f from Ω to X such that

$$\int_{\Omega} \|f(t)\|_X^p \, d\mu(t) < +\infty,$$

equipped with the norm

$$||f||_p = \int_{\Omega} ||f(t)||_X^p d\mu(t)^{1/p}.$$

We will also denote by $C_0^{\infty}(\mathbf{R}, X)$ ($C_0^{\infty}(\mathbf{R})$ if $X = \mathbf{R}$) the space of C^{∞} -functions from **R** to X such that $\lim_{t \to \pm \infty} ||f(t)|| = 0$, equipped with the norm

$$||f||_{\infty} = \sup\{||f(t)||_X, t \in \mathbf{R}\}.$$

We recall that X is UMD if martingale differences with values in X converge unconditionally in $L_2(\Omega, X)$ where Ω is any probability space, that is: there exists a constant C > 0, such that whenever $(M_k)_{k \in \mathbb{N}}$ is a bounded martingale in $L_2(\Omega, X)$ and $(\varepsilon_k)_{k \in \mathbb{N}}$ is a choice of signs,

$$\left\|\sum_{k=1}^{\infty}\varepsilon_k d_k\right\|_2 \le C \left\|\sum_{k=1}^{\infty}d_k\right\|_2 \quad \text{where } d_{k+1} = M_{k+1} - M_k.$$

By a martingale, we mean that there exists an increasing sequence of σ -subalgebras $(\mathscr{A}_k)_{k \in \mathbb{N}}$ of \mathscr{A} such that $E^{\mathscr{A}_k}[M_{k+1}] = M_k$, where $E^{\mathscr{A}_k}$ is the conditional expectation with respect to \mathscr{A}_k . It is well known that this

© 1991 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received July 24, 1989.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 47A05, 47A50; Secondary 46E40.