ON THE HURWITZ ZETA-FUNCTION

BY
Zhang Wenpeng ${ }^{1}$

1. Introduction

For $0<\alpha \leq 1$, let $\zeta(s, \alpha)$ be the Hurwitz zeta-function defined by

$$
\zeta(s, \alpha)=\sum_{n=0}^{\infty}(n+\alpha)^{-s} \text { for } \operatorname{Re}(s)>1
$$

and its analytic extension,

$$
\zeta_{x}(s, \alpha)=\zeta(s, \alpha)-\sum_{0 \leq n \leq x-\alpha} \frac{1}{(n+\alpha)^{s}}
$$

J.F. Koksma and C.G. Lekkerkerker [1] first studied the mean square value

$$
f(s)=\int_{0}^{1}\left|\zeta_{1}(s, \alpha)\right|^{2} d \alpha
$$

and obtained the following results:

Theorem A. If $1 / 2<\sigma \leq 1$ and $|t| \geq 3$, then

$$
\begin{gather*}
f\left(\frac{1}{2}+i t\right) \leq 64 \ln |t| \tag{I}\\
\left|f(\sigma+i t)-\frac{1}{2 \sigma-1}\right| \leq|t|^{1-2 \sigma}\left(32 \ln |t|+\frac{1}{2 \sigma-1}\right) \tag{II}
\end{gather*}
$$

Secondly, V.V. Rane [2] gave a general conclusion, namely:

Received January 26, 1990.
1980 Mathematics Subject Classification (1985 Revision). Primary 10H10; Secondary 11M35.
${ }^{1}$ Project Supported by the National Natural Science Foundation of China.

