SOME PROPERTIES OF THE QUOTIENT SPACE $(L^{1}(T^{d}) / H^{1}(D^{d}))$

QUANHUA XU

1. Introduction

Let D be the unit disc of the complex plane and T the unit circle equipped with normalized Lebesgue measure. Let d be a positive integer. We denote by D^d and T^d respectively the products of d copies of D and T. They are respectively the d-disc and d-torus. T^d is equipped with the product measure dm. Let $0 . We denote by <math>H^p(D^d)$ the classical Hardy space in the polydisc D^d . If $p < \infty$, this is the space of the analytic functions f in D^d such that

$$\sup_{0\leq r<1}\int_{\mathbf{T}^d}\left|f(rz)\right|^pdm(z)<\infty,$$

where $r = (r_1, \ldots, r_d) \in [0, 1)^d$, $z = (z_1, \ldots, z_d) \in \mathbf{T}^d$ and $rz = (r_1 z_1, \ldots, r_d z_d) \in D^d$. If $p = \infty$, $H^{\infty}(D^d)$ is the space of the bounded analytic functions in D^d . Equipped with its natural norm or quasi-norm, $H^p(D^d)$ is a Banach space if $1 \le p \le \infty$ and a quasi-Banach space if $0 . It is well-known that every function in <math>H^p(D^d)$ admits a.e. radial limits on \mathbf{T}^d and the function is uniquely determined by its boundary function on \mathbf{T}^d . Thus identifying functions in $H^p(D^d)$ with their boundary values, we may regard $H^p(D^d)$ as a closed subspace of $L^p(\mathbf{T}^d)$.

Let us recall that a Banach (or quasi-Banach) space X is of cotype 2 if there exists a constant C such that for all finite sequences $\{x_n\} \subset X$

$$\left(\sum \|x_n\|^2\right)^{1/2} \leq C \int \left\|\sum \varepsilon_n x_n\right\|,$$

where $\{\varepsilon_n\}$ is a Rademacher sequence. Recall also that a linear operator $u: X \to Y$ between two Banach spaces is called *p*-summing $(1 \le p < \infty)$ if there

© 1993 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received August 9, 1991

¹⁹⁹¹ Mathematics Subject Classification. Primary 46E15; Secondary 42B30.