CONVERGENCE OF ERGODIC AVERAGES ON LATTICE RANDOM WALKS

J. BOURGAIN¹

1. Introduction

This note is concerned with a question posed by H. Furstenberg and communicated to the author by Y. Katznelson.² For $d \ge 1$, consider the standard random walk on the lattice \mathbb{Z}^d , i.e., if $n(j) \in \mathbb{Z}^d$ in the j^{th} position, then n(j + 1) takes one of the values

$$n(j) \pm e_1, n(j) \pm e_2, \ldots, n(j) \pm e_d$$

with equal probability. Here e_j stands for the j^{th} unit vector. We consider ergodic averages along the sequence $\{n(j)\}$. Thus take some probability space (Ω, μ) and d commuting, invertible measure preserving transformations T_1, T_2, \ldots, T_d of Ω . Given a measurable function f on Ω , define

$$A_k f = \frac{1}{k} \sum_{j=1}^k T_1^{n(j,1)} T_2^{n(j,2)} \dots T_d^{n(j,d)} f$$
(1.1)

where n(j) = (n(j, 1), ..., n(j, d)). We are interested in the convergence properties of the averages (1.1). In this respect, we will prove the following

THEOREM. Almost any random walk $\{n(j)\}$ on \mathbb{Z}^d has the property that given any system $(\Omega, \mu, T_1, \ldots, T_d)$ of commuting transformations and $f \in L^p(\Omega, \mu)$, p > 1, the averages $A_k f$ given by (1.1) converge almost surely, along any sequence $\{k_s\}$ satisfying $k_{s+1} > k_s \log \log k_s$. In particular, there is convergence for the logarithmic averages. If moreover, one of the transformations is ergodic, the limit is $\int_{\Omega} f d\mu$.

A comment on the restrictions made in the statement: The subsequence extraction is needed, even for d = 1, and a generic random walk $\{n(j)\}$ is not

© 1993 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received October 11, 1991.

¹⁹⁹¹ Mathematics Subject Classification. Primary 40A05; Secondary 42A45, 42A61.

¹IHES, Bures/Yvette; University of Illinois.

²Stanford University, Summer 1990.