FOLIATIONS INVARIANT UNDER THE MEAN CURVATURE FLOW

PAWEŁ G. WALCZAK

Introduction

Let \mathscr{F} be a foliation of a Riemannian manifold (M, g) equipped with the Levi-Civita connection ∇ . The tangent bundle of M splits into the orthogonal sum $T\mathscr{F} \oplus T^{\perp}\mathscr{F}$ of the bundle tangent to F and its orthogonal complement, so any vector v decomposes into the sum $v^{\top} + v^{\perp}$ of vectors respectively tangent and perpendicular to \mathscr{F} . For any point $x \in M$, H(x) denotes the mean curvature at x of the leaf L of \mathscr{F} which passes through x. H is defined as the trace of the second fundamental form B of \mathscr{F} :

(1)
$$B(X,Y) = (\nabla_X Y)^{\perp}$$

for all vector fields X and Y tangent to \mathcal{F} and

(2)
$$H = \sum_{i=1}^{p} B(X_i, X_i),$$

where $p = \dim \mathscr{F}$ and X_1, \ldots, X_p is a (local) orthonormal frame of vector fields tangent to \mathscr{F} . (For suitable background in Riemannian geometry we refer to [K], for the notions and results of the theory of foliations to [CN], [HH] and [T].)

In this paper, we are interested in those foliations \mathscr{F} which are invariant under the local flows generated by the vector field H. Such foliations are said to be *mean curvature invariant*, or MCI for short. The infinitesimal condition sufficient and necessary for \mathscr{F} to be MCI is that

(3)
$$\langle [H, X], N \rangle = 0$$

for all vector fields X tangent to \mathscr{F} and N orthogonal to \mathscr{F} . In other words, \mathscr{F} is MCI iff H is parallel w.r.t. the (partial) Bott connection in $TM/T\mathscr{F} \cong T^{\perp}\mathscr{F}$, i.e. iff the Lie derivation \mathscr{L}_{H} maps the module $\mathscr{X}(\mathscr{F})$ of vector fields

© 1993 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received September 26, 1991.

¹⁹⁹¹ Mathematics Subject Classification. Primary 53C12; Secondary 57R30.